The imaging beamline (IBL/P05) operated by Helmholtz Zentrum Geesthacht (HZG) at the DESY PETRA III storage ring consists of two experimental stations: A micro tomography and a nano tomography end station.Here an overview of the experimental setups and the data acquisition will be given. In addition some first results out of the wide range of applications using the micro tomography station at P05 will be shown. Furthermore, we present first results of the nano tomography end station. These were obtained with an x-ray microscopy setup, which currently operates at energies of 17.4 and 30 keV using polymer compound refractive lenses (CRLs) and rolled prism lenses. Taken together these results clearly show the high potential of the newly built imaging beamline IBL.
Magnesium and its alloys have in recent years emerged as a promising alternative to titanium‐based implants for medical applications due to favorable degradation properties and good biocompatibility. The degradation of materials is currently investigated by studying different samples of the same material at different time points after degradation in a medium. This study is presenting a high‐resolution time‐lapse investigation of Mg‐2Ag in culture medium using synchrotron radiation‐based micro‐computed tomography over the course of 5 days. The design of the custom‐built corrosion cell and bioreactor are described. The computed degradation rate after 5 days is in agreement with the literature. SRµCT enables the segmentation of cracks forming in the degradation layer due to stresses and hydrogen development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.