DISRUPTION MITIGATION STUDIES IN DIII-D Data on the discharge behavior, thermal loads, halo currents, and runaway electrons have been obtained in disruptions on the DIH-D tokamak [J.L. Luxon and L.G. Davis, Fusion Technology 8,2A 441 (198.31. These experiments have also evaluated techniques to mitigate the disruptions while minimizing runaway electron production. Experiments injecting cryogenic impurity "killer" pellets of neon and argon and massive amounts of helium gas have successfully reduced these disruption effects. The halo current generation, scaling, and mitigation are understood and are in good agreement with predictions of a semianalytic model. Results from "killer" pellet injection have been used to benchmark theoretical models of the pellet ablation and energy loss. Runaway electrons are often generated by the pellets and new runaway generation mechanisms, modifications of the standard Dreicer process, have been found to explain the runaways. Experiments with the massive helium gas puff have also effectively mitigated disruptions without the formation of runaway electrons that can occur with "killer" pellets.
Deuterium gas injected into ELMing H mode divertor discharges in the DIII-D tokamak typically reduced the total power at the divertor target ~2 times and the peak heat flux ~3 to 5 times with modest (<10%) degradation in plasma energy confinement. The parameter range for the discharges investigated was: Ip=1.0-2.0 MA, q95 approximately= 2.4-6.0 and total input power (≲20 MW. Most of this reduction in heat flux occurred at the sudden formation of a high density, highly radiating region located between the outboard divertor separatrix strike point and the X point. This divertor behaviour is associated with a `partially detached' divertor plasma condition, which is referred to in this paper as the partially detached divertor (PDD) regime. With the onset of the PDD, typically at a line averaged density of 0.6 to 0.7 times the Greenwald density limit, an abrupt reduction in plasma electron pressure (≳4 times) was observed at the outboard divertor separatrix strike point; at the same time, however, only a modest (≲30%) change in the electron pressure was observed upstream near the outboard midplane separatrix. The data suggest that significant plasma momentum loss occurred between the high density, highly radiative region and the (downstream) divertor separatrix target. Plasma performance showed little degradation with the onset of the PDD regime. Deuterium injection made only modest changes in the temperature and density profile shapes near the midplane separatrix of the main plasma. The PDD approach is shown to be compatible with discharges operating at low safety factor (i.e. q95 equivalent to 2.9) and to be effective in significantly reducing toroidal asymmetry in observed divertor plasma properties (e.g., heat flux). The potential for operating in a steady state has been demonstrated using feedback control of the neutral pressure outside the main plasma
Recent measurements of the two-dimensional (2-D) spatial profiles of divertor plasma density, temperature, and emissivity in the DIII-D tokamak [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] under highly radiating conditions are presented. Data are obtained using a divertor Thomson scattering system and other diagnostics optimized for measuring the high electron densities and low temperatures in these detached divertor plasmas (ne⩽1021 m−3, 0.5 eV⩽Te). D2 gas injection in the divertor increases the plasma radiation and lowers Te to less than 2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion–neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the plasma pressure along the magnetic separatrix by a factor of 3–5, consistent with the measurements. Absolutely calibrated vacuum ultraviolet spectroscopy and 2-D images of impurity emission show that carbon radiation near the X-point, and deuterium radiation near the target plates contribute to the reduction in Te. Uniformity of radiated power (Prad) (within a factor of 2) along the outer divertor leg, with peak heat flux on the divertor target reduced fourfold, was obtained. A comparison with 2-D fluid simulations shows good agreement when physical sputtering and an ad hoc chemical sputtering source (0.5%) from the private flux region surface are used.
The injection of small deuterium pellets at high repetition rates up to 12Â the natural edge localized mode (ELM) frequency has been used to trigger high-frequency ELMs in otherwise low natural ELM frequency H-mode deuterium discharges in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The resulting pellet-triggered ELMs result in up to 12Â lower energy and particle fluxes to the divertor than the natural ELMs. The plasma global energy confinement and density are not strongly affected by the pellet perturbations. The plasma core impurity density is strongly reduced with the application of the pellets. These experiments were performed with pellets injected from the low field side pellet in plasmas designed to match the ITER baseline configuration in shape and normalized b operation with input heating power just above the H-mode power threshold. Nonlinear MHD simulations of the injected pellets show that destabilization of ballooning modes by a local pressure perturbation is responsible for the pellet ELM triggering. This strongly reduced ELM intensity shows promise for exploitation in ITER to control ELM size while maintaining high plasma purity and performance. V C 2013 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.