We present the weak lensing analysis of the Wide-Field Imager SZ Cluster of galaxy (WISCy) sample, a set of 12 clusters of galaxies selected for their Sunyaev-Zel'dovich (SZ) effect. After developing new and improved methods for background selection and determination of geometric lensing scaling factors from absolute multi-band photometry in cluster fields, we compare the weak lensing mass estimate with public X-ray and SZ data. We find consistency with hydrostatic X-ray masses with no significant bias, no mass dependent bias and less than 20% intrinsic scatter and constrain f gas,500c = 0.128 +0.029 −0.023 . We independently calibrate the South Pole Telescope significance-mass relation and find consistency with previous results. The comparison of weak lensing mass and Planck Compton parameters, whether extracted selfconsistently with a mass-observable relation (MOR) or using X-ray prior information on cluster size, shows significant discrepancies. The deviations from the MOR strongly correlate with cluster mass and redshift. This could be explained either by a significantly shallower than expected slope of Compton decrement versus mass and a corresponding problem in the previous X-ray based mass calibration, or a size or redshift dependent bias in SZ signal extraction.
We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847 (z=0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the multiply-lensed arcs. The CLASH observations, combined with our mass-model, allow us to identify 47 new multiply-lensed images of 12 distant sources. These images, along with the previously known arc, span the redshift range 1 z 5.5, and thus enable us to derive a detailed mass distribution and to accurately constrain, for the first time, the inner mass-profile of this cluster. We find an inner profile slope of d log Σ/d log θ −0.55 ± 0.1 (in the range [1 , 53 ], or 5 r 300 kpc), as commonly found for relaxed and well-concentrated clusters. Using the many systems uncovered here we derive credible critical curves and Einstein radii for different source redshifts. For a source at z s 2.5, the critical curve encloses a large area with an effective Einstein radius of θ E = 28 ± 3 , and a projected mass of 1.34 ± 0.15 × 10 14 M . From the current understanding of structure formation in concordance cosmology, these values are relatively high for clusters at z ∼ 0.5, so that detailed studies of the inner mass distribution of clusters such as MACS J1206.2-0847 can provide stringent tests of the ΛCDM paradigm.
We present a weak lensing analysis of the cluster of galaxies RXC J2248.7-4431, a massive system at z = 0.3475 with prominent strong lensing features covered by the Cluster Lensing And Supernova survey with Hubble (CLASH). Based on UBVRIZ imaging from the Wide-Field Imager camera at the MPG/ESO 2.2-m telescope, we measure photometric redshifts and shapes of background galaxies. The cluster is detected as a mass peak at 5σ significance. Its density can be parametrized as a Navarro-Frenk-White (NFW) profile with two free parameters, the mass M 200m = 33.1 +9.6 −6.8 × 10 14 M ⊙ and concentration c 200m = 2.6 +1.5 −1.0 . We discover a second cluster inside the field of view at a photometric redshift of z ≈ 0.6, with an NFW mass of M 200m = 4.0 +3.7 −2.6 ×10 14 M ⊙ .
We present a quintuply lensed z ∼ 6 candidate discovered in the field of the galaxy cluster RXC J2248.7−4431 (z ∼ 0.348) targeted within the Cluster Lensing and Supernova survey with Hubble (CLASH) and selected in the deep Hubble Space Telescope (HST) frontier fields survey. Thanks to the CLASH 16-band HST imaging, we identify the quintuply lensed z ∼ 6 candidate as an optical dropout in the inner region of the cluster, the brightest image having mag AB = 24.8 ± 0.1 in the f105w filter. We perform a detailed photometric analysis to verify its high-z and lensed nature. We get as photometric redshift z ph ∼ 5.9, and given the extended nature and NIR colours of the lensed images, we rule out low-z early-type and galactic star contaminants. We perform a strong lensing analysis of the cluster, using 13 families of multiple
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.