A mathematical model for the regulation of mechanical activity in cardiac muscle has been developed based on a three-element rheological model of this muscle. The contractile element has been modeled taking into account the results of extensive mechanical tests that involved the recording of length-force and force-velocity relations and muscle responses to short-time deformations during various phases of the contraction-relaxation cycle. The best agreement between the experimental and the mathematical modeling results was obtained when a postulate stating two types of cooperativity to regulate the calcium binding by troponin was introduced into the model. Cooperativity of the first type is due to the dependence of the affinity of troponin C for Ca2+ on the concentration of myosin crossbridges in the vicinity of a given troponin C. Cooperativity of the second type assumes an increase in the affinity of a given troponin C for Ca2+ when the latter is bound by molecules neighboring troponin.
Iron oxide γ-Fe2O3 magnetic nanoparticles (MNPs) were fabricated by laser target evaporation technique (LTE) and their structure and magnetic properties were studied. Polyacrylamide (PAAm) gels with different cross-linking density of the polymer network and polyacrylamide-based ferrogel with embedded LTE MNPs (0.34 wt.%) were synthesized. Their adhesive and proliferative potential with respect to human dermal fibroblasts were studied. At the same value of Young modulus, the adhesive and proliferative activities of the human dermal fibroblasts on the surface of ferrogel were unexpectedly much higher in comparison with the surface of PAAm gel. Properties of PAAm-100 + γ-Fe2O3 MNPs composites were discussed with focus on creation of a new generation of drug delivery systems combined in multifunctional devices, including magnetic field assisted delivery, positioning, and biosensing. Although exact applications are still under development, the obtained results show a high potential of LTE MNPs to be applied for cellular technologies and tissue engineering. PAAm-100 ferrogel with very low concentration of γ-Fe2O3 MNPs results in significant improvement of the cells’ compatibility to the gel-based scaffold.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.