Ubiquitylated substrate recognition during ubiquitin/proteasome-mediated proteolysis (UPP) is mediated directly by the proteasome subunits RPN10 and RPN13 and indirectly by ubiquitin-like (UBL) and ubiquitin-associated (UBA) domain-containing factors. To dissect the complexity and functional roles of UPP substrate recognition in Arabidopsis thaliana, potential UPP substrate receptors were characterized. RPN10 and members of the UBL-UBA-containing RAD23 and DSK2 families displayed strong affinities for Lys-48-linked ubiquitin chains (the major UPP signals), indicating that they are involved in ubiquitylated substrate recognition. Additionally, RPN10 uses distinct interfaces as primary proteasomal docking sites for RAD23s and DSK2s. Analyses of T-DNA insertion knockout or RNA interference knockdown mutants of potential UPP ubiquitin receptors, including RPN10, RPN13, RAD23a-d, DSK2a-b, DDI1, and NUB1, demonstrated that only the RPN10 mutant gave clear phenotypes. The null rpn10-2 showed decreased double-capped proteasomes, increased 20S core complexes, and pleiotropic vegetative and reproductive growth phenotypes. Surprisingly, the observed rpn10-2 phenotypes were rescued by a RPN10 variant defective in substrate recognition, indicating that the defectiveness of RPN10 in proteasome but not substrate recognition function is responsible for the null phenotypes. Our results suggest that redundant recognition pathways likely are used in Arabidopsis to target ubiquitylated substrates for proteasomal degradation and that their specific roles in vivo require further examination.
ABSTRACTIn bacteria, arginine biosynthesis is tightly regulated by a universally conserved regulator, ArgR, which regulates the expression of arginine biosynthetic genes, as well as other important genes. Disruption ofargRinStreptomyces clavuligerusNP1 resulted in complex phenotypic changes in growth and antibiotic production levels. To understand the metabolic changes underlying the phenotypes, comparative proteomic studies were carried out between NP1 and itsargRdisruption mutant (designated CZR). In CZR, enzymes involved in holomycin biosynthesis were overexpressed; this is consistent with its holomycin overproduction phenotype. The effects on clavulanic acid (CA) biosynthesis are more complex. Several proteins from the CA cluster were moderately overexpressed, whereas several proteins from the 5S clavam biosynthetic cluster and from the paralog cluster of CA and 5S clavam biosynthesis were severely downregulated. Obvious changes were also detected in primary metabolism, which are mainly reflected in the altered expression levels of proteins involved in acetyl-coenzyme A (CoA) and cysteine biosynthesis. Since acetyl-CoA and cysteine are precursors for holomycin synthesis, overexpression of these proteins is consistent with the holomycin overproduction phenotype. The complex interplay between primary and secondary metabolism and between secondary metabolic pathways were revealed by these analyses, and the insights will guide further efforts to improve production levels of CA and holomycin inS. clavuligerus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.