Although viviparity (live birth) has evolved from oviparity (egg laying) at least 140 times in vertebrates, nearly 120 of these independent events occurred within a single reptile taxon. Surprisingly, only squamate reptiles (lizards and snakes) are capable of facilitating embryonic development to increasingly advanced stages inside the mother during extended periods of oviducal egg retention. Viviparity has never evolved in turtle lineages, presumably because embryos enter and remain in an arrested state until after eggs are laid, regardless of the duration of egg retention. Until now, the limiting factor that initiates and maintains developmental arrest has remained elusive. Here, we show that oviducal hypoxia arrests embryonic development. We demonstrate that hypoxia can maintain developmental arrest after oviposition and that subsequent exposure of arrested embryos to normoxia triggers resumption of their development. We discovered remarkably low oxygen partial pressure in the oviducts of gravid turtles and found that secretions produced by the oviduct retard oxygen diffusion. Our results suggest that an extremely hypoxic environment in the oviduct arrests embryonic development and may constrain the evolution of viviparity in turtles, with the reduced diffusive capacity of oviducal secretions possibly creating or contributing to this hypoxia. We anticipate that these findings will allow us to better understand the mechanisms underlying the evolutionary transition between reproductive modes.
, 504 reptiles of four families and 57 species were examined for Salmonella by using cloacal or intestinal swabs. Salmonella was identified in 139 (28%) of the 504 animals tested. Of the 504 reptiles examined, 210 were captive and 294 were wild. Ninety-eight (47%) of the captive reptiles were shedding Salmonella at the time of sampling. In contrast, only 41 (14%) of the wild reptiles were shedding Salmonella. The higher prevalence of Salmonella in captive reptiles was statistically significant (P,0.0001). No Salmonella was found in 60 wild, freshwater chelonians or 48 wild southern water skinks (Eulamprus heatwolei). Our results suggest that some species of wild reptiles in Australia are not natural carriers of Salmonella and that diet and captivity may influence Salmonella excretion in other species.
Background: The microbiota plays a critical role in host homeostasis and has been shown to be a major driving force in host evolution. However, our understanding of these important relationships is hampered by a lack of data for many species, and by significant gaps in sampling of the evolutionary tree. In this investigation we improve our understanding of the host-microbiome relationship by obtaining samples from all seven extant species of sea turtle, and correlate microbial compositions with host evolutionary history. Results: Our analysis shows that the predominate phyla in the microbiota of nesting sea turtles was Proteobacteria. We also demonstrate a strong relationship between the bacterial phyla SR1 and sea turtle phylogeny, and that sea turtle microbiotas have changed very slowly over time in accordance with their similarly slow phenotypic changes. Conclusions: This is one of the most comprehensive microbiota studies to have been performed in a single clade of animals and further improves our knowledge of how microbial populations have influenced vertebrate evolution.
Medical records of 931 reptiles admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Healesville, Victoria, Australia, from 2000 to 2013 were reviewed to determine the causes of morbidity and mortality. Thirty-nine species were presented; the most common were the common long-neck turtle (Chelodina longicollis; n = 311, 33.4%), the eastern bluetongue lizard (Tiliqua scincoides; n = 224, 4.1%), the blotched bluetongue lizard (Tiliqua nigrolutea; n = 136, 14.6%), and the lowland copperhead (Austrelaps superbus; n = 55, 5.9%). Trauma was the most significant reason for admissions, accounting for 73.0% of cases. This was followed by not injured (11.7%), displacement (6.4%), snake removal (4.2%), human interference (3.1%), introduced species (1.1%), sick/diseased (0.2%), and illegal pet (0.2%). Within the category of trauma, impact with motor vehicle (41.0% of trauma cases) and domestic animal attack (33.2% of trauma cases) were the most common subcategories. Our results indicate that indirect anthropogenic factors are a significant cause of morbidity and mortality in Australian reptiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.