Arsenic contamination in water, especially groundwater, has been recognized as a major problem of catastrophic proportions. The toxicology and health hazard also has been reported for many years. Because of the recognition that arsenic at low concentrations in drinking water causes severe health effects, the technologies of arsenic removal that have become increasing important. The current regulation of drinking water standard is become more stringent and requires arsenic content to be reduced to a few parts per billion. There are several treatment methods capable of this level of performancemembranes, coagulation, anion exchange, disposable iron media, softening etc. Treatment cost, operational complexity of the technology, skill required to operate the technology and disposal of arsenic bearing treatment residual are factors should be considered before treatment method selection. This paper aims to review briefly arsenic toxicology and hazards and also the previous and current available technologies that have been reported in arsenic removal. Residual generation and disposal after treatment will also be discussed.
Rice husk as a low-value agricultural by-product can be made into sorbent materials which are used in heavy metal and dye removal. It has been investigated as a replacement for currently expensive methods of heavy metal removal from solutions. Currently, the study of rice husk as a low-cost sorbent for removing heavy metals has regained attention. The heavy metals being studied are: As(V) [1], Au [2,3], Cr(IV) [4], Cu and Pb [5,6], Fe, Mn, Zn, Cu [7] and Cd(II) [8-10]. Rice husk is also being used to treat textile dyes such as like malachite green [11,12] and acid yellow 36 [13]. The treatment and preparation of rice husk activated carbon are of importance and became a subject of study [14-16]. In this review an extensive list of previous and current literature on rice husk activated carbons in removing heavy metals and dyes, their preparation or treatment and isotherms studies were complied to provide a summary of available information on rice husk and its potential as a low-cost sorbent.
In recent years, the race for producing biodegradable products has increase tremendously. Different approaches have been attempted to use biomass as natural biopolymer for production of biodegradable plastics. In this work, cellulose was derived from oil palm empty fruit bunch fiber (EFBF) by standard ASTM D1104 method. The cellulose and EFB fibers were blended in different ratios up to 50-wt.% with polypropylene (PP) using Brabender twin-screw compounder. Effects of cellulose and EFB fibers on the mechanical properties of PP were investigated. Studies on the morphological properties and the influence of fiber loading on the properties of PP-cellulose and PP-EFBF composites were also conducted. The PP-cellulose composite gave better results in comparison with PP-EFBF composite. The changes in mechanical and morphological properties with different cellulose and fiber loading were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.