Arsenic contamination in water, especially groundwater, has been recognized as a major problem of catastrophic proportions. The toxicology and health hazard also has been reported for many years. Because of the recognition that arsenic at low concentrations in drinking water causes severe health effects, the technologies of arsenic removal that have become increasing important. The current regulation of drinking water standard is become more stringent and requires arsenic content to be reduced to a few parts per billion. There are several treatment methods capable of this level of performancemembranes, coagulation, anion exchange, disposable iron media, softening etc. Treatment cost, operational complexity of the technology, skill required to operate the technology and disposal of arsenic bearing treatment residual are factors should be considered before treatment method selection. This paper aims to review briefly arsenic toxicology and hazards and also the previous and current available technologies that have been reported in arsenic removal. Residual generation and disposal after treatment will also be discussed.
The threat of oil pollution increases with the expansion of oil exploration and production activities, as well as the industrial growth around the world. The study on the treatment of oily wastewater is a critical issue to the environmental protection as oil caused problems to the wastewater treatment facilities. Although oil particles can efficiently be removed by advanced technologies, the treatments are usually expensive and difficult to maintain. Adsorption and coalescence filtration are promising choice of treatment for its simplicity, effectiveness, and feasibility when appropriate sorbent is used. This review discusses the recent papers on the use of natural fibrous sorbent for removal of oil from wastewater, and its current development. With their excellent oil removal properties, environmental friendliness, easy availability, and feasibility, natural fibrous sorbents are an attractive alternative for oily wastewater treatment.
In recent years, the race for producing biodegradable products has increase tremendously. Different approaches have been attempted to use biomass as natural biopolymer for production of biodegradable plastics. In this work, cellulose was derived from oil palm empty fruit bunch fiber (EFBF) by standard ASTM D1104 method. The cellulose and EFB fibers were blended in different ratios up to 50-wt.% with polypropylene (PP) using Brabender twin-screw compounder. Effects of cellulose and EFB fibers on the mechanical properties of PP were investigated. Studies on the morphological properties and the influence of fiber loading on the properties of PP-cellulose and PP-EFBF composites were also conducted. The PP-cellulose composite gave better results in comparison with PP-EFBF composite. The changes in mechanical and morphological properties with different cellulose and fiber loading were discussed.
The booming demand for energy across the world, especially for petroleum-based fuels, has led to the search for a long-term solution as a perfect source of sustainable energy. Lignocellulosic biomass resolves this obstacle as it is a readily available, inexpensive, and renewable fuel source that fulfills the criteria of sustainability. Valorization of lignocellulosic biomass and its components into value-added products maximizes the energy output and promotes the approach of lignocellulosic biorefinery. However, disruption of the recalcitrant structure of lignocellulosic biomass (LCB) via pretreatment technologies is costly and power-/heat-consuming. Therefore, devising an effective pretreatment method is a challenge. Likewise, the thermochemical and biological lignocellulosic conversion poses problems of efficiency, operational costs, and energy consumption. The advent of integrated technologies would probably resolve this problem. However, it is yet to be explored how to make it applicable at a commercial scale. This article will concisely review basic concepts of lignocellulosic composition and the routes opted by them to produce bioenergy. Moreover, it will also discuss the pros and cons of the pretreatment and conversion methods of lignocellulosic biomass. This critical analysis will bring to light the solutions for efficient and cost-effective conversion of lignocellulosic biomass that would pave the way for the development of sustainable energy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.