In addition to low BMD, AA have impaired bone microarchitecture compared with EA and nonathletes. These are the first data to show abnormal bone microarchitecture in AA.
Context:The female athlete triad (the triad) is an interrelationship of menstrual dysfunction, low energy availability (with or without an eating disorder), and decreased bone mineral density; it is relatively common among young women participating in sports. Diagnosis and treatment of this potentially serious condition is complicated and often requires an interdisciplinary team.Evidence Acquisition:Articles from 1981 to present found on PubMed were selected for review of major components of the female athlete triad as well as strategies for diagnosis and treatment of the conditions.Results:The main goal in treatment of young female athletes with the triad is a natural return of menses as well as enhancement of bone mineral density. While no specific drug intervention has been shown to consistently improve bone mineral density in this patient population, maximizing energy availability and optimizing vitamin D and calcium intake are recommended.Conclusions:Treatment requires a multidisciplinary approach involving health care professionals as well as coaches and family members. Prevention of this condition is important to minimize complications of the female athlete triad.
Pre-implantation genetic diagnosis (PGD) has changed the landscape of clinical genetics by helping families reduce the transmission of monogenic disorders. However, given the high prevalence of embryonic aneuploidy, particularly in patients of advanced reproductive age, unaffected embryos remain at high risk of implantation failure or pregnancy loss due to aneuploidy. 24-chromosome aneuploidy screening has become widely utilized in routine in vitro fertilization (IVF) to pre-select embryos with greater pregnancy potential, but concurrent 24-chromosome aneuploidy screening has not become standard practice in embryos biopsied for PGD. We performed a retrospective cohort study of patients who underwent PGD with or without 24-chromosome aneuploidy screening to explore the value of concurrent screening. Among the PGD + aneuploidy-screened group (n = 355 blastocysts), only 25.6 % of embryos were both Single Gene Disorder (SGD)-negative (or carriers) and euploid; thus the majority of embryos were ineligible for transfer due to the high prevalence of aneuploidy. Despite a young mean age (32.4 ± 5.9y), 49.9 % of Blastocysts were aneuploid. The majority of patients (53.2 %) had ≥1 blastocyst that was Single Gene Disorder (SGD)-unaffected but aneuploid; without screening, these unaffected but aneuploid embryos would likely have been transferred resulting in implantation failure, pregnancy loss, or a pregnancy affected by chromosomal aneuploidy. Despite the transfer of nearly half the number of embryos in the aneuploidy-screened group (1.1 ± 0.3 vs. 1.9 ± 0.6, p < 0.0001), the implantation rate was higher (75 % vs. 53.3 %) and miscarriage rate lower (20 % vs. 40 %) (although not statistically significant). 24-chromosome aneuploidy screening when performed concurrently with PGD provides valuable information for embryo selection, and notably improves single embryo transfer rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.