1. Movements often require control of direction and a magnitude of force exerted externally on the environment. Bi‐articular upper leg muscles appear to play a unique role in the regulation of the net torques about the hip and knee joints, necessary for the control of this external force. 2. The aim of this study was to test the hypothesis that the mono‐articular muscles act as work generators in powerful dynamic leg extensions, which means that they should be activated primarily in the phases during which they can contribute to work, irrespective of the net joint torques required to control the external force. 3. Cycling movements of six trained subjects were analysed by means of inverse dynamics, yielding net joint torques as well as activity patterns and shortening velocities of four mono‐ and four bi‐articular leg muscles. 4. The results show that the mono‐articular muscles exert force only in the phase in which these muscles shorten, whereas this appears not to be the case for the bi‐articular muscles. 5. Reciprocal patterns of activation of the rectus femoris and hamstring muscles appear to tune the distribution of net joint torques about the hip and knee joints, necessary to control the (changing) direction of the force on the pedal. 6. An analysis of running in man and additional related literature based on animal studies appears to provide further support for the hypothesis that mono‐ and bi‐articular muscles have essentially different roles in these powerful multijoint leg extension tasks.
We have investigated whether differences in EMG activity in mono-and biarticular muscles for concentric and eccentric contractions (van Bolhuis, Gielen, & van Ingen Schenau, 1998) have to be attributed to a specific muscle coordination strategy or whether they are merely a demonstration of adaptations necessary to adjust for muscle contractile properties. Slow, multi-joint ann movements were studied in a horizontal plane with an external force applied at the wrist. Kinematics and electromyography data from 10 subjects were combined with data from a 3-D model of the arm and a Hill-type muscle model. Data for both mono-and bi-articular muscles revealed a higher activation in concentric than in eccentric contractions. The model calculations indicated that the measured difference in activation (20%) was much larger than expected based on the force-velocity relationship (predicting changes of -5%).Although these findings eliminate the force-velocity relationship as the main explanation for changes in EMG, it cannot be ruled out that other muscle contractile properties, such as history dependence of muscle force, determine muscle activation levels in the task that was studied.
We have investigated, in fast movements, the hypothesis that bi-articular muscles are preferentially selected to control me direction of force exerted on the environment, while mono-articular muscles are selected to control both this exerted force direction as well as the movement direction. Fourteen subjects performed ballistic arm movements involving shoulder and elbow rotations in the horizontal plane, either with or without an external force applied at the wrist. Joint torques required to counteract the external force were in the same order of magnitude as those required to overcome the inertial load during movements. EMG was recorded from mono- and bi-articular flexors and extensors of me elbow and shoulder. Signals were rectified and integrated (IREMG) over 100 ms following the first detected activity. MANOVA revealed mat, contrary to the hypothesis, IREMG of bi-articular muscles varied with movement direction just as that of the mono-articular muscles. It was concluded that the present data do not support me hypothesis mentioned above. A second finding was that movement effects on IREMG were much stronger than external force effects. This could not be explained using Hill's force-velocity relationship. It may be an indication that in the initiation of fast movements, IREMG is not only tuned to movement dynamics and muscle contractile properties, but also to me dynamics of the build up of an active state of the muscle.
This study investigates the hypothesis that EMG measured from a muscle at a given force, length, and low-shortening velocity depends on the contraction history, specifically the distance over which the muscle has shortened. Slow linear horizontal wrist movements (3 cm/s) involving shoulder and elbow rotations towards a test position of 90° elbow flexion were performed. REMG was measured at the test position after wrist displacements over 6.5 and 13 cm. Muscle contraction speed was below 1% of maximum. A constant force (25 N) causing flexion torque in the elbow was exerted by the wrist. Inertial load was minimal. Two main elbow flexors (biceps caput longum and breve) showed significantly higher (14 and 24%) concentric REMG after 13-cm wrist movement than alter 6.5-cm. Eccentric EMG did not differ between the 6.5-and 13-cm conditions. It is concluded that adaptation of muscle activation is required to counteract the effects of contraction history on the force producing capacity of the muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.