Fire blight (FB), caused by the Gram-negative bacterium Erwinia amylovora is a dangerous disease on pome fruit, including apple. The FB-susceptible cultivar ÔIdaredÕ was crossed with the resistant wild species clone Malus · robusta 5. A segregating population of 146 progeny has been tested by artificial shoot inoculation for susceptibility to FB. Progeny were infected from 0% to 100% of the shoot length. To identify chromosomal regions or loci responsible for resistance to FB of Malus · robusta 5, a set of microsatellite markers (simple sequence repeat, SSRs) was chosen covering all linkage groups of apple. Up to eight different microsatellites were bulked to one mutliplex PCR using four different labels and a fifth label for a size standard. Fifty-nine microsatellite markers out of 72 SSRs were polymorphic. Fifty-four of 66 loci detected could be mapped and were useful for the detection of related resistant loci. Alleles of microsatellites Hi03d06, CH03g07 and CH03e03 originating from the resistant donor M. robusta were associated with resistance to Erwinia amylovora. Up to eighty percent of the phenotypic variation could be explained by the interval spanned by SSRs CH03g07 and CH03e03, indicating the presence of a major resistance gene. All three microsatellites are located on the distal part of linkage group 3, spanning 15 cM. The SSR marker CH03e03 can be regarded as diagnostic marker for FB resistance. Only seven progeny expressing allele b (184 bp) of CH03e03 showed blighted shoot lengths of more than 30% and only nine progeny lacking allele b showed blighted shoot lengths of <30%. By setting a threshold of 30% shoot necrosis for resistance to FB, the 146 individuals segregate into 71 susceptible and 75 resistant plants, and resistance to FB maps 9 cM away from marker CH03e03.
Molecular markers for the major apple powdery mildew resistance gene Pl1 were identified and are presently used in marker‐assisted selection in apple breeding. However, the precise map position of the Pl1 gene in the apple genome was not known. The objectives of this investigation were the identification of the Malus linkage group (LG) carrying the Pl1 locus, mapping of the resistance gene by simple sequence repeat (SSR) markers, and the analysis of genetic associations between the Pl1 gene and the numerous NBS‐LRR resistance gene candidates already mapped in the apple genome. A two‐step linkage mapping was used, based on two different apple families. The identification of LG 12 carrying Pl1 was performed indirectly by mapping the SCAR marker AT20 in an apple progeny for which there was a core genetic map but no mildew data available. Then, the position of Pl1 on LG 12 was determined by SSR markers in a second population which has been scored for mildew over 6 years in a greenhouse and in the field. The SSR Hi07f01, previously mapped on LG 12 [Tree Genet. Genomes, 2 (2006), 202] cosegregated with AT20 and was closely linked (∼1 cM) to the Pl1 gene. The TIR‐NBS‐LRR resistance gene analogue 15G11 mapped by the SSCP technique was also closely linked to the Pl1 resistance locus and might be a candidate for Pl1 itself, a second powdery mildew major resistance gene (Pld, [Theor. Appl. Genet., 110 (2004), 175]), or two scab resistance genes (Vg, [IOBC/WPRS Bull., 23 (2000), 245]; Vb, [Genome, 49 (2006), 1238]) which all seem to be located in a common R gene cluster at the distal end of apple LG 12.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.