Remarkable progress has been made in diagnosing energetic particle instabilities on presentday machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.
Experiments on accelerating NBI-produced deuterium (D) beam ions from their injection energy of $ 110 keV up to the MeV energy range with 3rd harmonic ion cyclotron resonance heating were performed on the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)]. A renewed set of nuclear diagnostics was used for analysing fast D ions during sawtooth stabilization, monster sawtooth crashes, and during excitation of Alfvén eigenmodes (AEs) residing inside the q ¼ 1 radius. The measurements and modeling of the fast ions with the nonlinear HAGIS code [S. D. Pinches et al., Comput. Phys. Commun. 111, 133 (1998)] show that monster sawtooth crashes are strongly facilitated by the AE-induced re-distribution of the fast D ions from inside the q ¼ 1 radius to the plasma edge. [http://dx.
We report the first measurement of low-energy proton-capture cross sections of 124 Xe in a heavyion storage ring. 124 Xe 54+ ions of five different beam energies between 5.5 AMeV and 8 AMeV were stored to collide with a windowless hydrogen target. The 125 Cs reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and X-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron-and γ-widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Charged-particle induced reactions like (p,γ) and (α,γ) and their reverse reactions play a central role in the quantitative description of explosive scenarios like supernovae [1] or X-ray binaries [2], where temperatures above 1 GK can be reached. The energy interval in which the reactions most likely occur under astrophysical conditions is called the Gamow window [3,4]. Experimentalists usually face two major challenges when approaching the Gamow window: firstly, the relatively low center-of-mass energies of only a few MeV or less, and secondly, the rapid decrease of cross sections with energy. The high stopping power connected to low-energy beams typically limits the amount of target material, and thus the achievable luminosity. A measurement of small cross sections, on the contrary, requires high luminosities.The description of charged-particle processes in explosive nucleosynthesis -e.g., the γ process occurring in core-collapse and thermonuclear supernovae [5-7] and the rp process on the surface of mass-accreting neutron stars [8] -requires large reaction networks including very short-lived nuclei. Experimental data are extremely scarce [9], especially in the mass region A > 70, and the modelling relies on calculated cross sections. It is therefore essential to test the theory and its central input parameters. In this Letter we report the first study of the 124 Xe(p,γ) 125 Cs reaction. The cross section is measured on the high energy tail of the Gamow peak, which is located between 2.74 and 5.42 MeV at 3.5 GK in the γ process [4]. While the 124 Xe(p,γ) reaction serves as a major milestone for improving the experimental technique
The following errors were introduced in the production process:• In the abstract it says that at θ=90°, a degree of polarization of +0.27%±0.12% was measured. This number should be +27%±12%.• On page 5 there are three occurrences of an amplitude A. All of them should be A P instead. AbstractWe report on the first elastic hard x-ray scattering experiment where the linear polarization characteristics of both the incident and the scattered radiation were observed. Rayleigh scattering was investigated in a relativistic regime by using a high-Z target material, namely gold, and a photon energy of 175keV. Although the incident synchrotron radiation was nearly 100% linearly polarized, at a scattering angle of 90 q = we observed a strong depolarization for the scattered photons with a degree of linear polarization of 0.27% 0.12% + only. This finding agrees with second-order quantum electrodynamics calculations of Rayleigh scattering, when taking into account a small polarization impurity of the incident photon beam which was determined to be close to 98%. The latter value was obtained independently from the elastic scattering by analyzing photons that were Compton-scattered in the target. Moreover, our results indicate that when relying on state-of-the-art theory, Rayleigh scattering could provide a very accurate method to diagnose polarization impurities in a broad region of hard x-ray energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.