This paper is the first part of a two part paper reporting the improvement of efficiency of a one-and-half stage high work axial flow turbine by nonaxisymmetric endwall contouring. In this first paper the design of the endwall contours is described, and the computational fluid dynamics (CFD) flow predictions are compared with five-hole-probe measurements. The endwalls have been designed using automatic numerical optimization by means of a sequential quadratic programming algorithm, the flow being computed with the 3D Reynolds averaged Navier-Stokes (RANS) solver TRACE. The aim of the design was to reduce the secondary kinetic energy and secondary losses. The experimental results confirm the improvement of turbine efficiency, showing a stage efficiency benefit of 1%±0.4%, revealing that the improvement is underestimated by CFD. The secondary flow and loss have been significantly reduced in the vane, but improvement of the midspan flow is also observed. Mainly this loss reduction in the first row and the more homogeneous flow is responsible for the overall improvement. Numerical investigations indicate that the transition modeling on the airfoil strongly influences the secondary loss predictions. The results confirm that nonaxisymmetric endwall profiling is an effective method to improve turbine efficiency but that further modeling work is needed to achieve a good predictability.
In high-pressure turbines, a small amount of air is ejected at the hub rim seal to cool and prevent the ingestion of hot gases into the cavity between the stator and the disk. This paper presents an experimental study of the flow mechanisms that are associated with injection through the hub rim seal at the rotor inlet. Two different injection rates are investigated: nominal sucking of −0.14% of the main massflow and nominal blowing of 0.9%. This investigation is executed on a one-and-1/2-stage axial turbine. The results shown here come from unsteady and steady measurements, which have been acquired upstream and downstream of the rotor. The paper gives a detailed analysis of the changing secondary flow field, as well as unsteady interactions associated with the injection. The injection of fluid causes a very different and generally more unsteady flow field at the rotor exit near the hub. The injection causes the turbine efficiency to deteriorate by about 0.6%.
In high-pressure turbines, a small amount of air is ejected at the hub rim seal, to cool and prevent the ingestion of hot gases into the cavity between the stator and the disk. This paper presents an experimental study of the flow mechanisms that are associated with injection through the hub rim seal at the rotor inlet. Two different injection rates are investigated: nominal sucking of −0.1% of the main massflow and nominal blowing of 0.9%. This investigation is executed on a one-and-1/2-stage axial turbine. The results shown here come from unsteady and steady measurements, which have been acquired upstream and downstream of the rotor. The paper gives a detailed analysis of the changing secondary flow field as well as unsteady interactions associated with the injection. The injection of fluid causes a very different and generally more unsteady flow field at the rotor exit near the hub. The injection causes the turbine efficiency to deteriorate by about 0.6%.
This paper is the first part of a two part paper reporting the improvement of efficiency of a one-and-half stage high work axial flow turbine by non-axisymmetric endwall contouring. In this first paper the design of the endwall contours is described and the CFD flow predictions are compared to five-hole-probe measurements. The endwalls have been designed using automatic numerical optimization by means of an Sequential Quadratic Programming (SQP) algorithm, the flow being computed with the 3D RANS solver TRACE. The aim of the design was to reduce the secondary kinetic energy and secondary losses. The experimental results confirm the improvement of turbine efficiency, showing a stage efficiency benefit of 1%±0.4%, revealing that the improvement is underestimated by CFD. The secondary flow and loss have been significantly reduced in the vane, but improvement of the midspan flow is also observed. Mainly this loss reduction in the first row and the more homogeneous flow is responsible for the overall improvement. Numerical investigations indicate that the transition modeling on the airfoil strongly influences the secondary loss predictions. The results confirm that non-axisymmetric endwall profiling is an effective method to improve turbine efficiency, but that further modeling work is needed to achieve a good predictability.
This paper is the second part of a two part paper that reports on the improvement of efficiency of a one and a half stage high work axial flow turbine. The first part covered the design of the endwall profiling, as well as a comparison with steady probe data; this part covers the analysis of the time-resolved flow physics. The focus is on the time-resolved flow physics that leads to a total-to-total stage efficiency improvement of 1.0%±0.4%. The investigated geometry is a model of a high work (Δh/U2=2.36), axial shroudless HP turbine. The time-resolved measurements have been acquired upstream and downstream of the rotor using a fast response aerodynamic probe (FRAP). This paper contains a detailed analysis of the secondary flow field that is changed between the axisymmetric and the nonaxisymmetric endwall profiling cases. The flowfield at the exit of the first stator is improved considerably due to the nonaxisymmetric endwall profiling and results in reduced secondary flow and a reduction in loss at both hub and tip, as well as a reduced trailing shed vorticity. The rotor has reduced losses and a reduction in secondary flows mainly at the hub. At the rotor exit, the flow field with nonaxisymmetric endwalls is more homogenous due to the reduction in secondary flows in the two rows upstream of the measurement plane. This confirms that nonaxisymmetric endwall profiling is an effective tool for reducing secondary losses in axial turbines. Using a frozen flow assumption, the time-resolved data are used to estimate the axial velocity gradients, which are then used to evaluate the streamwise vorticity and dissipation. The nonaxisymmetric endwall profiling of the first nozzle guide vane show reductions in dissipation and streamwise vorticity due to the reduced trailing shed vorticity. This smaller vorticity explains the reduction in loss at midspan, which is shown in the first part of the two part paper. This leads to the conclusion that nonaxisymmetric endwall profiling also has the potential of reducing trailing shed vorticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.