Embedded memory blocks are important resources in contemporary FPGA devices. When targeting FPGAs, application designers often specify high-level memory functions which exhibit a range of sizes and control structures. These logical memories must be mapped to FPGA embedded memory resources such that physical design objectives are met. In this work a set of power-aware logical-to-physical RAM mapping algorithms are described which convert user-defined memory specifications to on-chip FPGA memory block resources. These algorithms minimize RAM dynamic power by evaluating a range of possible embedded memory block mappings and selecting the most power-efficient choice. Our automated approach has been integrated into a commercial FPGA compiler and tested with 40 large FPGA benchmarks. Through experimentation, we show that, on average, embedded memory dynamic power can be reduced by 21% and overall core dynamic power can be reduced by 7% with a minimal loss (1%) in design performance.
A reliable multicast algorithm, called RMA, for mobile ad hoc networks is presented that is based on a new cost criterion, called link lifetime, for determining the optimal path between a pair of nodes. The algorithm has the characteristics of using an undirected graph for its routing operations rather than a fixed structure like a tree or a mesh. Previously proposed routing metrics for mobile ad hoc networks were designed for use in wired environments, where link stability is not a concern. We propose a new metric, called the lifetime, which is more appropriate for mobile ad hoc networks. The lifetime metric is dependent on the predicted future life of the link under consideration. We developed a simulator for the mobile ad hoc networks, which is portable and scalable to a large number of nodes. Using the simulator, we carried out a simulation study to analyze the effectiveness of the routing metrics and the performance of the proposed reliable multicast algorithm. The simulation results show that the lifetime metric helps achieve better performance in mobile ad hoc environments than the hop count metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.