Abstract. Numerous domains, in fundamental research as well as in applications, require the study of reactions induced by neutrons with energies from few MeV up to few tens of MeV. Reliable measurements also are necessary to improve the evaluated databases used by nuclear transport codes. This energy range covers a large number of topics like transmutation of nuclear waste, design of future fission and fusion reactors, nuclear medicine or test and development of new detectors. A new facility called Neutrons For Science (NFS) is being built for this purpose on the GANIL site at Caen (France). NFS is composed of a pulsed neutron beam for time-of-flight facility as well as irradiation stations for cross-section measurements. Neutrons will be produced by the interaction of deuteron and proton beams, delivered by the SPIRAL-2 linear accelerator, with thick or thin converters made of beryllium or lithium. Continuous and quasi-mono-energetic spectra will be available at NFS up to 40 MeV. In this fast energy region, the neutron flux is expected to be up to 2 orders of magnitude higher than at other existing time-of-flight facilities. In addition, irradiation stations for neutron-, proton-and deuteron-induced reactions will allow performing cross-section measurements by the activation technique. After a description of the facility and its characteristics, the experiments to be performed in the short and medium term will be presented.
The characteristics of a Lead Slowing-Down Spectrometer (LSDS) installed at the Los Alamos Neutron Science Center (LANSCE) are presented in this paper. This instrument is designed to study neutron-induced fission on ultra small quantities of actinides, on the order of tens of nanograms or less. The measurements of the energy-time relation, energy resolution and neutron flux are compared to simulations performed with MCNPX. Results on neutroninduced fission of 235 U and 239 Pu with tens of micrograms and tens of nanograms, respectively, are presented. Finally, a digital filter designed to improve the detection of fission events at short time after the proton pulses is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.