Cobalt germanide (CoxGey) is a candidate system for low resistance contact modules in future Ge devices in Si-based micro and nanoelectronics. In this paper, we present a detailed structural, morphological, and compositional study on CoxGey formation on Ge(001) at room temperature metal deposition and subsequent annealing. Scanning tunneling microscopy and low energy electron diffraction clearly demonstrate that room temperature deposition of approximately four monolayers of Co on Ge(001) results in the Volmer Weber growth mode, while subsequent thermal annealing leads to the formation of a Co-germanide continuous wetting layer which evolves gradually towards the growth of elongated CoxGey nanostructures. Two types of CoxGey nanostructures, namely, flattop- and ridge-type, were observed and a systematic study on their evolution as a function of temperature is presented. Additional transmission electron microscopy and x-ray photoemission spectroscopy measurements allowed us to monitor the reaction between Co and Ge in the formation process of the CoxGey continuous wetting layer as well as the CoxGey nanostructures.
We use controlled annealing to tune the interfacial properties of a sub-monolayer and monolayer coverages of Ba atoms deposited on Ge(001), enabling the generation of either of two fundamentally distinct interfacial phases, as revealed by scanning tunneling microscopy. Firstly we identify the two key structural phases associated with this adsorption system, namely on-top adsorption and surface alloy formation, by performing a deposition and annealing experiment at a coverage low enough (∼0.15 ML) that isolated Ba-related features can be individually resolved. Subsequently we investigate the monolayer coverage case, of interest for passivation schemes of future Ge based devices, for which we find that the thermal evaporation of Ba onto a Ge(001) surface at room temperature results in on-top adsorption. This separation (lack of intermixing) between Ba and Ge layers is retained through successive annealing steps to temperatures of 470, 570, 670 and 770 K although a gradual ordering of the Ba layer is observed at 570 K and above, accompanied by a decrease in Ba layer density. Annealing above 770 K produces the 2D surface alloy phase accompanied by strain relief through monolayer height trench formation. An annealing temperature of 1070 K sees a further change in surface morphology but retention of the 2D surface alloy characteristic. These results are discussed in view of their possible implications for future semiconductor integrated circuit technology.
Nickel germanide is deemed an excellent material system for low resistance contact formation for future Ge device modules integrated into mainstream, Si-based integrated circuit technologies. In this study, we present a multi-technique experimental study on the formation processes of nickel germanides on Ge(001). We demonstrate that room temperature deposition of ∼1 nm of Ni on Ge(001) is realized in the Volmer-Weber growth mode. Subsequent thermal annealing results first in the formation of a continuous NixGey wetting layer featuring well-defined terrace morphology. Upon increasing the annealing temperature to 300 °C, we observed the onset of a de-wetting process, characterized by the appearance of voids on the NixGey terraces. Annealing above 300 °C enhances this de-wetting process and the surface evolves gradually towards the formation of well-ordered, rectangular NixGey 3D nanostructures. Annealing up to 500 °C induces an Ostwald ripening phenomenon, with smaller nanoislands disappearing and larger ones increasing their size. Subsequent annealing to higher temperatures drives the Ni-germanide diffusion into the bulk and the consequent formation of highly ordered, {111} faceted Ni-Ge nanocrystals featuring an epitaxial relationship with the substrate Ni-Ge (101); (010) || Ge(001); (110).
An ordered alkaline-earth submonolayer on a clean Si(001) surface provides a template for growth of the atomically sharp, crystalline Si-oxide interface that is ubiquitous in the semiconductor device industry. It has been suggested that submonolayers of Sr or Ba on Ge(001) could play a similar role as on structurally identical Si(001), overcoming known limitations of the Ge(001) substrate such as amorphization of its oxidation layers. In this paper the initial stage of the Ba oxidation process, i.e., adsorption and organization of Ba atoms on the Ge(001) surface as a function of temperature (270−770 K) for coverage 1.0 monolayer (ML) and 0.15−0.4 ML, is studied using scanning tunneling microscopy (STM) and density functional theory (DFT). Three types of features have been identified on the Ba-covered Ge(001) surface. They originate from isolated Ba adatoms, isolated Ba ad-dimers, and the Ba ad-dimers assembled into short-range, randomly distributed chains that run across the Ge dimer rows. We find from both STM measurements and DFT calculations that the latter is the dominant structure on Ge(001) with increasing coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.