In this present work, a PVA/PVP-blend polymer was doped with various concentrations of neodymium oxide (PB-Nd+3) composite films using the solution casting technique. X-ray diffraction (XRD) analysis was used to investigate the composite structure and proved the semi-crystallinity of the pure PVA/PVP polymeric sample. Furthermore, Fourier transform infrared (FT-IR) analysis, a chemical-structure tool, illustrated a significant interaction of PB-Nd+3 elements in the polymeric blends. The transmittance data reached 88% for the host PVA/PVP blend matrix, while the absorption increased with the high dopant quantities of PB-Nd+3. The absorption spectrum fitting (ASF) and Tauc’s models optically estimated the direct and indirect energy bandgaps, where the addition of PB-Nd+3 concentrations resulted in a drop in the energy bandgap values. A remarkably higher quantity of Urbach energy for the investigated composite films was observed with the increase in the PB-Nd+3 contents. Moreover, seven theoretical equations were utilized, in this current research, to indicate the correlation between the refractive index and the energy bandgap. The indirect bandgaps for the proposed composites were evaluated to be in the range of 5.6 eV to 4.82 eV; in addition, the direct energy gaps decreased from 6.09 eV to 5.83 eV as the dopant ratios increased. The nonlinear optical parameters were influenced by adding PB-Nd+3, which tended to increase the values. The PB-Nd+3 composite films enhanced the optical limiting effects and offered a cut-off laser in the visible region. The real and imaginary parts of the dielectric permittivity of the blend polymer embedded in PB-Nd+3 increased in the low-frequency region. The AC conductivity and nonlinear I-V characteristics were augmented with the doping level of PB-Nd+3 contents in the blended PVA/PVP polymer. The outstanding findings regarding the structural, electrical, optical, and dielectric performance of the proposed materials show that the new PB-Nd+3-doped PVA/PVP composite polymeric films are applicable in optoelectronics, cut-off lasers, and electrical devices.
The growth of the textile industry results in a massive accumulation of dyes on water. This enormous rise in pigments is the primary source of water pollution, affecting the aquatic lives and our ecosystem balance. This study aims to notify the fabrication of neodymium incorporated copper oxide (Nd2O3 doped CuO) nanoparticles by combustion method for effective degradation of dye, methylene blue (MB). X-ray diffraction (XRD), Field emission Scanning electron microscopy (FESEM), Zeta potential have been applied for characterization. Photocatalyst validity has been evaluated for methylene blue degradation (MB). Test conditions such as time of contact, H2O2, pH, and photo-Fenton have been modified to identify optimal degradation conditions. Noticeably, 7.5% Nd2O3 doped CuO nanoparticle demonstrated the highest photocatalytic efficiency, up to 90.8% in 80 min, with a 0.0227 min−1 degradation rate. However, the photocatalytic efficiency at pH 10 becomes 99% with a rate constant of 0.082 min−1. Cyclic experiments showed the Nd2O3 doped CuO nanoparticle’s stability over repeated use. Scavenge hydroxyl radical species responsible for degradation using 7.5% Nd2O3 doped CuO nanoparticles have been investigated under visible irradiation.
An efficient and environmentally friendly combustion technique was employed to produce ZnO nanopowders with different Eu concentrations (from 0.001 g to 5 g). The structural morphology of the Eu2O3-ZnO nanocomposites was examined using XRD, SEM, and infrared spectroscopy (FT-IR). In addition, UV-Vis diffuse reflectance spectroscopy was also used to investigate the effects of europium (Eu) dopant on the optical behaviors and energy bandgaps of nano-complex oxides. The photocatalytic degradation efficiency of phenol and methylene blue was investigated using all the prepared Eu2O3-ZnO nanostructured samples. Photocatalytic effectiveness increased when europium (Eu) doping ratios increased. After adding moderate Eu, more hydroxyl radicals were generated over ZnO. The best photocatalyst for phenol degradation was 1 percent Eu2O3-ZnO, while it was 0.5 percent Eu2O3-ZnO for methylene blue solutions. The obtained Eu2O3-doped ZnO nanostructured materials are considered innovative, promising candidates for a wide range of nano-applications, including biomedical and photocatalytic degradation of organic dyes and phenol.
In this paper, we discuss the preparation of Li-doped ZnO nanostructures through combustion and report on their structural, morphological, optical, and electrocatalysis properties. X-ray diffraction analyses show that the samples have a structure crystallized into the usual hexagonal wurtzite ZnO structure according to the P63mc space group. The scanning electron microscope images conceal all samples’ nanosphere bundles and aggregates. The reflectance spectra analysis showed that the direct bandgap values varied from 3.273 eV (for pure ZnO, i.e., ZnL1) to 3.256 eV (for high Li-doped ZnO). The measured capacitance concerning frequency has estimated the variation of dielectric constant, dielectric loss, and AC conductivity against AC electric field frequency. The dielectric constant variations and AC conductivity are analyzed and discussed by well-known models such as Koop’s phenomenological theory and Jonscher’s law. The Raman spectra have been recorded and examined for the prepared samples. Rhodamine B was electro-catalytically degraded in all prepared samples, with the fastest time for ZnL5 being 3 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.