The finite element method is a powerful tool for the design and optimization of hot forming processes. In order to obtain high accuracy in simulation results, exact knowledge of the process conditions is required. Due to the fact that friction in the contact area has a significant impact on the material flow during the forming process, a realistic description of this boundary condition in the FE simulation is important for the usability of the simulation results. The most important influencing factors are the contact pressure, the roughness of the contact surfaces, the sliding velocity and the flow behavior of the material. Currently, only constant friction coefficients are considered in commercial finite element systems for the simulation of bulk metal forming processes. However, this description does not represent the state of the art in tribology. A new friction model is developed, taking into account the sliding velocity between tools and workpiece. This is confirmed by experimental and numerical investigations on model experiments and industrial process.
In hot forging processes the complex heat transfer and friction conditions are significantly influenced by the local effects occurring at the contact interface between the tool and workpiece. These effects basically include the prevailing normal stress and shear yield stress of the workpiece material, the temperature and surface roughness of the tool and workpiece as well as the relative sliding velocity. Hence, these effects were considered for the extension of the heat transfer and friction models. Two representative forging tests were carried out; the forming load and surface temperature distribution were recorded. By means of this data, the models were appropriately extended and adjusted using the software FORGE ®. The application of the extended models allows for a more accurate description of the interaction at the contact interface. Thus FE computations of hot forging processes deliver more realistic results.
KurzfassungIn der “Leittechnologie für Morgen – Ressourceneffiziente Prozesskette für Hochleistungsbauteile” (EcoForge) wird eine verkürzte Schmiedeprozesskette für Hochleistungsbauteile entwickelt, die Energie-Einsparungen von > 30 % ermöglicht. Diese Prozesskette wird für hochfeste duktile bainitische Stähle (HDB) optimiert. Dies geschieht, indem unter direkter Ausnutzung der Schmiedewärme unmittelbar an den Schmiedeprozess eine auf den Stahl zugeschnittene Wärmebehandlung vorgenommen wird. Dabei wird die Gefügeumwandlung im Bauteil durch eine neuartige Hochtemperatur-Wirbelstromtechnik während der Abkühlung ermittelt. Die Messsignale werden online erfasst und stehen zur Steuerung der Temperaturführung im Abkühlpfad zur Verfügung. Noch während der Wärmebehandlung, insbesondere der isothermen Wärmebehandlung im Gebiet des Bainits und in ihrem Anschluss, werden weitere Bearbeitungsschritte wie die Heißzerspanung und die Lauwarmumformung vorgenommen. Die Bearbeitungsschritte finden bei Bauteiltemperaturen von ca. 300–500 °C statt. Diese hohen Temperaturen ermöglichen die Bearbeitung des Zielgefüges bei reduzierten mechanischen Belastungen der Werkzeuge. Die erzeugten Mikrostrukturen werden mittels einer neuentwickelten REM-Bildanalyseroutine quantitativ charakterisiert. Simultan zu den experimentellen Untersuchungen wird die gesamte Prozesskette numerisch abgebildet und die Gefügeevolution der Schmiedebauteile im Prozess simuliert.
Hot forging dies are exposed during service to a combination of cyclic thermo-mechanical, tribological and chemical loads. Besides abrasive and adhesive wear on the die surface, fatigue crack initiation with subsequent fracture is one of the most frequent causes of failure. In order to extend the tool life, the finite element method (FEM) may serve as a means for process design and process optimisation. So far the FEM based estimation of the production cycles until initial cracking is limited as tool material behaviour due to repeated loading is not captured with the required accuracy. Material models which are able to account for cyclic effects are not verified for the fatigue life predictions of forging dies. Furthermore fatigue properties from strain controlled fatigue tests of relevant hot work steels are to date not available to allow for a close-to-reality fatigue life prediction. An industrial forging process, where clear fatigue crack initiation has been observed is considered for a fatigue analysis. For this purpose the relevant tool component is modelled with elasto-plastic material behaviour. The predi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.