The Warburg effect describes the ability of cancer cells to produce energy via aerobic glycolysis instead of oxidative phosphorylation of pyruvate. This deviation in mitochondrial metabolism inhibits apoptosis, allowing increased proliferation under conditions of reduced oxygen levels. Dichloroacetate (DCA) was successfully used in several human cancer cell lines to reactivate oxidative phosphorylation in mitochondria. The aim of this study was the characterization and response of canine cancer cell lines after DCA exposure. The effect of 10 mM DCA was characterized in vitro on a set of six canine prostate adenocarcinoma and transitional cell carcinoma (TCC) derived cell lines. Cell counts, lactate levels, apoptosis, expression of apoptotic proteins, survival factors and different miRNAs were analyzed. Additionally, metabolic activity, mitochondrial activity and proliferation were investigated. DCA significantly decreased cell number of all but one utilized cell lines and leads to a significant reduction of lactate release. Decreased survivin levels were found in all cell lines, two of which presented a significant reduction in metabolic activity. Increased miR-375 levels were measured in all TCC cell lines. Reactivation of pyruvate dehydrogenase and an elevated mitochondrial activity appear to induce the transition from aerobic glycolysis back to oxidative phosphorylation. Further, these results display that DCA treatment has a suppressant effect on proliferation of canine cancer cells.
Targeting mitochondrial energy metabolism is a novel approach in cancer research and can be traced back to the description of the Warburg effect. Dichloroacetate, a controversially discussed subject of many studies in cancer research, is a pyruvate dehydrogenase kinase inhibitor. Dichloroacetate causes metabolic changes in cancerous glycolysis towards oxidative phosphorylation via indirect activation of pyruvate dehydrogenase in mitochondria. Canine mammary cancer is frequently diagnosed but after therapy prognosis still remains poor. In this study, canine mammary carcinoma, adenoma and non-neoplastic mammary gland cell lines were treated using 10 mM Dichloroacetate. The effect on cell number, lactate release and PDH expression and cell respiration was investigated. Further, the effect on apoptosis and several apoptotic proteins, proliferation, and microRNA expression was evaluated. Dichloroacetate was found to reduce cell proliferation without inducing apoptosis in all examined cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.