Enzymatic membrane reactors are discussed according to the state of biocatalyst and driving force of reaction. Particular attention is given to the Capillary Membrane Fixed Enzyme Reactor (CAMFER) for its favorable characteristics. It is shown that, for a practical range of operation conditions, both kinetic and mass transfer effects must be considered simultaneously. Three modes of operation were investigated in detail using enzymatic lactose hydrolysis as a model reaction: Diffusional reactor, Recycle reactor, and Backflush reactor. In the comparison, superior performance of the CAMFER in diffusional mode was clearly demonstrated.
A series of 18 differently substituted new aryl hetaryl ketones and thioketones were synthesized in four to six steps from commercial starting materials. The new ketones were evaluated as inhibitors of the peptidyl-prolyl cis-trans isomerase hPin1 with K(i) values ranging in the one-digit micromolar to sub-micromolar numbers. A crystal structure revealed the non-planar arrangement of the aryl residues at the carbonyl compound and supports the hypothesis that the new compounds might mimic the transition state of the enzymatic conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.