We have measured the light-induced short-circuit current generated by a planar membrane containing bacteriorhodopsin incorporated by vesicle fusion. The experimental results are consistent with an equivalent electrical circuit analogue that assumes that the vesicles remain intact after fusion and that the current generator equivalent of the light-driven proton pump is linearly dependent on bias voltage. The transient response to light of the planar membrane has also been examined. Slow response times are seen to be associated with the capacitive charging and discharging of the fused vesicles. A study of the leading edge of the light response curve of the planar membrane yields information about the transient response of the light-driven proton pump. We propose that the translocation of protons across the membrane is associated with a first-order process characterized by a rate constant lambda.
The technique of laser-excited Eu(III) luminescence was applied to monitor Eu(III) binding to a variety of phospholipids. Eu(III) excitation spectra were similar with and without the presence of neutral phospholipids, while acidic phospholipids changed the spectrum in a concentration-dependent manner. Eu(III) appears to bind to the phosphate moiety with at least a 2:1 phospholipid:metal ion stoichiometry. Analysis of luminescence lifetimes reveals that only one or two waters of hydration are removed from Eu(III) by addition of neutral phospholipids, whereas acidic phospholipids and inorganic phosphate strip off all but one or two waters. Implications with regard to fusion and use of lanthanides as probes in membrane preparations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.