This paper aims to present the results of a numerical and experimental study of the temperature field, internal forces and the residual stresses in 2 mm thick autogenous welds of AISI 316L stainless steel produced by continuous and pulse current gas tungsten arc welding. A special experimental device was used to measure the temperature and the internal forces due to the welding. The welds were qualified for internal and external weld imperfections according to ISO 15614-1. FEM software ANSYS® Multyphysics™ was applied in order to solve the thermal and mechanical problems. Normal residual stresses were measured by the hole-drilling strain gauge method in the continuous current weld. The peak value of the longitudinal stress was 80 % of the base metal yield stress. The magnitude of the numerically obtained residual stress values was found to be 16 % to 19 % above the measured one in the longitudinal and transverse direction, respectively. The experimental device used in this study allowed for a real time measurement of forces far from the weld seam. On the basis of the correspondence between the calculated and measured forces the numerical results were verified. Therefore, this device might open up new possibilities for determining thermo-mechanical material data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.