Global climate and the concentration of atmospheric carbon dioxide (CO2) are correlated over recent glacial cycles. The combination of processes responsible for a rise in atmospheric CO2 at the last glacial termination (23,000 to 9,000 years ago), however, remains uncertain. Establishing the timing and rate of CO2 changes in the past provides critical insight into the mechanisms that influence the carbon cycle and helps put present and future anthropogenic emissions in context. Here we present CO2 and methane (CH4) records of the last deglaciation from a new high-accumulation West Antarctic ice core with unprecedented temporal resolution and precise chronology. We show that although low-frequency CO2 variations parallel changes in Antarctic temperature, abrupt CO2 changes occur that have a clear relationship with abrupt climate changes in the Northern Hemisphere. A significant proportion of the direct radiative forcing associated with the rise in atmospheric CO2 occurred in three sudden steps, each of 10 to 15 parts per million. Every step took place in less than two centuries and was followed by no notable change in atmospheric CO2 for about 1,000 to 1,500 years. Slow, millennial-scale ventilation of Southern Ocean CO2-rich, deep-ocean water masses is thought to have been fundamental to the rise in atmospheric CO2 associated with the glacial termination, given the strong covariance of CO2 levels and Antarctic temperatures. Our data establish a contribution from an abrupt, centennial-scale mode of CO2 variability that is not directly related to Antarctic temperature. We suggest that processes operating on centennial timescales, probably involving the Atlantic meridional overturning circulation, seem to be influencing global carbon-cycle dynamics and are at present not widely considered in Earth system models.
An understanding of the mechanisms that control CO 2 change during glacial-interglacial cycles remains elusive. Here we help to constrain changing sources with a high-precision, high-resolution deglacial record of the stable isotopic composition of carbon in CO 2 (δ 13 C-CO 2 ) in air extracted from ice samples from Taylor Glacier, Antarctica. During the initial rise in atmospheric CO 2 from 17.6 to 15.5 ka, these data demarcate a decrease in δ 13 C-CO 2 , likely due to a weakened oceanic biological pump. From 15.5 to 11.5 ka, the continued atmospheric CO 2 rise of 40 ppm is associated with small changes in δ 13 C-CO 2 , consistent with a nearly equal contribution from a further weakening of the biological pump and rising ocean temperature. These two trends, related to marine sources, are punctuated at 16.3 and 12.9 ka with abrupt, century-scale perturbations in δ 13 C-CO 2 that suggest rapid oxidation of organic land carbon or enhanced air-sea gas exchange in the Southern Ocean. Additional century-scale increases in atmospheric CO 2 coincident with increases in atmospheric CH 4 and Northern Hemisphere temperature at the onset of the Bølling (14.6-14.3 ka) and Holocene (11.6-11.4 ka) intervals are associated with small changes in δ 13 C-CO 2 , suggesting a combination of sources that included rising surface ocean temperature.ice cores | paleoclimate | carbon cycle | atmospheric CO 2 | last deglaciation O ver thirty years ago ice cores provided the first clear evidence that atmospheric CO 2 increased by about 75 ppm as Earth transitioned from a glacial to an interglacial state (1, 2). After decades of research, the underlying mechanisms that drive glacial-interglacial CO 2 cycles are still unclear. A tentative consensus has formed that the deglaciation is characterized by a net transfer of carbon from the ocean to the atmosphere and terrestrial biosphere, through a combination of changes in ocean temperature, nutrient utilization, circulation, and alkalinity. Partitioning these changes in terms of magnitude and timing is challenging. Estimates of the glacial-interglacial carbon cycle budget are highly uncertain, ranging from 20-30 ppm for the effect of rising ocean temperature, 5-55 ppm for ocean circulation changes, and 5-30 ppm for decreasing iron fertilization (3, 4), with feedbacks from CaCO 3 compensation accounting for up to 30 ppm (5, 6).A precise history of the stable isotopic composition of atmospheric carbon dioxide (δ 13 C-CO 2 ) can constrain key processes controlling atmospheric CO 2 (7,8). A low-resolution record from the Taylor Dome ice core (9) identified a decrease in δ 13 C-CO 2 at the onset of the deglacial CO 2 rise that was followed by increases in both CO 2 and δ 13 C-CO 2 (Fig. 1). A higher-resolution record from the European Project for Ice Coring in Antarctica Dome C (EDC) ice core (10) provided additional support for the rapid δ 13 C-CO 2 decrease associated with the initial CO 2 rise, and box modeling indicated that this decrease was consistent with changes in marine productivity. The r...
The last glacial period exhibited abrupt Dansgaard-Oeschger climatic oscillations, evidence of which is preserved in a variety of Northern Hemisphere palaeoclimate archives. Ice cores show that Antarctica cooled during the warm phases of the Greenland Dansgaard-Oeschger cycle and vice versa, suggesting an interhemispheric redistribution of heat through a mechanism called the bipolar seesaw. Variations in the Atlantic meridional overturning circulation (AMOC) strength are thought to have been important, but much uncertainty remains regarding the dynamics and trigger of these abrupt events. Key information is contained in the relative phasing of hemispheric climate variations, yet the large, poorly constrained difference between gas age and ice age and the relatively low resolution of methane records from Antarctic ice cores have so far precluded methane-based synchronization at the required sub-centennial precision. Here we use a recently drilled high-accumulation Antarctic ice core to show that, on average, abrupt Greenland warming leads the corresponding Antarctic cooling onset by 218 ± 92 years (2σ) for Dansgaard-Oeschger events, including the Bølling event; Greenland cooling leads the corresponding onset of Antarctic warming by 208 ± 96 years. Our results demonstrate a north-to-south directionality of the abrupt climatic signal, which is propagated to the Southern Hemisphere high latitudes by oceanic rather than atmospheric processes. The similar interpolar phasing of warming and cooling transitions suggests that the transfer time of the climatic signal is independent of the AMOC background state. Our findings confirm a central role for ocean circulation in the bipolar seesaw and provide clear criteria for assessing hypotheses and model simulations of Dansgaard-Oeschger dynamics.
Methane (CH) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (CH) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.