In this study, the role that active tension development plays in the formation and maintenance of cardiac myocyte myofibrillar structure and cellular shape was investigated. By use of the calcium channel blocker verapamil, spontaneous contractile activity of neonatal rat heart myocytes was inhibited for 24 to 96 hours. Confocal microscopy of rhodamine phalloidin-stained cells revealed that, within 24 hours of contractile arrest, actin filaments of myofibrils were no longer aligned with one another at their I bands and Z lines. Cellular shape was also affected, with the cells developing a less stellate appearance while remaining attached to the substrate as well as to one another. By 48 hours, actin fibrils were largely absent from these cells. The disappearance of actin was confirmed by measurements of actin synthesis and accumulation rates and by pulse-chase biosynthetic labeling experiments. It was revealed that, although actin synthesis was significantly reduced in arrested myocytes, the rapid disappearance of total cellular actin was largely due to increased rates of actin degradation. Contractile arrest produced by L-type calcium channel blockade with verapamil (or other calcium channel blockers) accelerated actin degradation to a greater extent than K+ depolarization. Chloroquine partially suppressed the accelerated rate of actin degradation, indicating that lysosomal proteolysis may be involved in actin degradative processing. Protein kinase C activation also partially inhibited the accelerated rate of actin degradation but did not restore actin filaments in arrested myocytes. The reformation of actin fibrils and their reassembly into striated myofibrils occurred when contractile activity was restored by removal of verapamil from the culture medium. The period of time required for myocytes to reassemble actin filaments and to regain their elongated morphology was proportional to the period of time that the cells were inhibited from contracting. Data are presented to indicate that active tension development by neonatal cardiac myocytes in culture is critical to the maintenance of filamentous actin structure via mechanisms involving actin assembly, disassembly, and degradation.
Most animal running models have traditionally used aversive motivators to induce exercise tasks. This study demonstrates treadmill running motivated by reinforcement of intracranial self-stimulation (ICSS), providing an alternative model with which to study physiological responses to exercise. Twenty-nine male Sprague-Dawley rats were stereotaxically implanted with bipolar electrodes aimed at the ventral tegmental area of the brain. After 7 days of operant lever-press training for ICSS, rats that pressed at least 50 presses/min were randomly divided into three conditions: exercise-reinforcing brain stimulation (Ex-St), exercise-aversive shock (Ex-Sh), and sedentary controls (C). Ex-St and Ex-Sh ran for 30 min at 25 m/min at 5% grade for 2 wk with ICSS and electric shock as the motivator, respectively, while C did not run. At the end of 2 wk, Ex-St and Ex-Sh performed an endurance run. Results show that Ex-St ran longer than Ex-Sh [63 +/- 10 vs. 42 +/- 10 (SD) min; P less than 0.05]. HR was higher in Ex-St than in C (P less than 0.05). Rectal temperature increased similarly in both exercise groups. This model provides a highly effective method to motivate treadmill running in rats and as such can be used to characterize physiological responses to exercise without the potentially confounding influence of stress associated with an aversive shock motivator.
The purpose of this study was to determine the feasibility of using a positive reinforcement protocol to motivate weight-lifting exercise in rats. Intracranial self-stimulation was used to induce weight-lifting exercise. Bipolar electrodes were implanted in the ventral tegmental area of rats, and the animals were trained to bar press on a continuous reinforcement schedule for electrical brain stimulation. Animals with response rates of 1,200-1,500 presses/h were then trained with a discriminative light stimulus to alternate between a normally positioned bar and an elevated bar that could be reached only by standing on the hindlimbs. The animals were fitted with a weighted jacket at a starting resistance of 5-10% of their body weight. Weight-training sessions were conducted 5 days/wk for 10 wk. Training consisted of 600 presses/session, alternating every 15 presses between the low and high bars. At the beginning of each subsequent week, the resistance was progressively increased, with some animals eventually training at resistances greater than 50% of their body weight. At the end of the training period, the rats were lifting over 550% of the starting weight. Gastrocnemius size and mean fiber diameter were increased in the weight-lifting animals. This model combines exercise with positive incentive and has the advantages of being relatively easy to implement and not producing any apparent physical or mental trauma in the animal.
The purpose of this investigation was to characterize selected metabolic, cardiovascular, and hormonal responses to reinforcing intracranial self-stimulation (ICSS) of the ventral tegmental area (VTA) in rats. Twenty male Sprague-Dawley rats were stereotaxically implanted with bipolar electrodes aimed at the VTA of the brain. Rats were trained to lever-press for ICSS for 1 wk. While they adapted to the experimental environment by sitting in a metabolic operant chamber, they were connected to the electrode cable but did not lever-press. All animals were instrumented with arterial catheters. Rats receiving contingent stimulation (C-St; n = 10) performed 30 min of lever pressing in the metabolic operant chamber for reinforcing brain stimulation. Oxygen consumption (VO2), heart rate (HR), mean arterial pressure (MAP), and rectal temperature (Trec) increased with the onset and continuation of contingent brain stimulation over 30 min (P < 0.05). In addition, plasma norepinephrine (NE), epinephrine (Epi), and corticosterone increased significantly above resting values in C-St rats (P < 0.05). Five animals received investigator-delivered reinforcing brain stimulation (noncontingent stimulation; NC-St), with MAP, HR, VO2, NE, and Epi increasing significantly above resting values (P < 0.05). Trec and corticosterone were not responsive to noncontingent brain stimulation. With the exception of HR, nonstimulated controls (n = 5) did not experience increases above resting values in any of the variables measured. The responses suggest that contingent brain stimulation reward elicits heightened sympathetic arousal.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.