The pharmacokinetics and pharmacodynamics of meloxicam in piglets (16-23 days old) were studied using a stratified parallel group design. One group (n = 13) received 0.4 mg/kg meloxicam intravenously, while the other group (n = 12) received physiological saline solution. A carrageenan-sponge model of acute inflammation was used to evaluate the effects of meloxicam. The plasma clearance was low (0.061 L/kg/h), the volume of distribution was low (0.19 L/kg) and the elimination half-life was short (2.7 h). At most time points, the mean concentration of meloxicam in plasma exceeded the concentrations in exudate indicating a limited accumulation of the drug at the site of the inflammation. There were significant differences between the groups in the exudate prostaglandin E2 (PGE2) concentration, but the inhibition of PGE2 in the meloxicam group was limited. The inhibition of thromboxane B(2) (TXB2) production in serum in the meloxicam group was extensive, but of shorter duration than the PGE2 inhibition in exudate.
The chiral pharmacokinetics and pharmacodynamics of ketoprofen were investigated in a placebo-controlled study in piglets after intramuscular administration of 6 mg/kg racemic ketoprofen. The absorption half-lives of both enantiomers were short, and S-ketoprofen predominated over R-ketoprofen in plasma. A kaolin-induced inflammation model was used to evaluate the anti-inflammatory, antipyretic and analgesic effects of ketoprofen. Skin temperatures increased after the kaolin injection, but the effect of ketoprofen was small. No significant antipyretic effects could be detected, but body temperatures tended to be lower in the ketoprofen-treated piglets. Mechanical nociceptive threshold testing was used to evaluate the analgesic effects. The piglets in the ketoprofen-treated group had significantly higher mechanical nociceptive thresholds compared to the piglets in the placebo group for 12-24 h following the treatment. Pharmacokinetic/pharmacodynamic modelling of the results from the mechanical nociceptive threshold testing gave a median IC(50) for S-ketoprofen of 26.7 μg/mL and an IC(50) for R-ketoprofen of 1.6 μg/mL. This indicates that R-ketoprofen is a more potent analgesic than S-ketoprofen in piglets. Estimated ED(50) for racemic ketoprofen was 2.5 mg/kg.
ObjectiveTo evaluate the stability and repeatability of measures of mechanical (nociceptive) thresholds in piglets and to examine potentially confounding factors when using a hand held algometer.Study designDescriptive, prospective cohort.AnimalsForty-four piglets from four litters, weighing 4.6 ± 1.0 kg (mean ± SD) at 2 weeks of age.MethodsMechanical thresholds were measured twice on each of 2 days during the first and second week of life. Data were analyzed using a repeated measures design to test the effects of behavior prior to testing, sex, week, day within week, and repetition within day. The effect of body weight and the interaction between piglet weight and behaviour were also tested. Piglet was entered into the model as a random effect as an additional test of repeatability. The effect of repeated testing was used to test the stability of measures. Pearson correlations between repeated measures were used to test the repeatability of measures. Variance component analysis was used to describe the variability in the data.ResultsVariance component analysis indicated that piglet explained only 17% of the variance in the data. All variables in the model (behaviour prior to testing, sex, week, day within week, repetition within day, body weight, the interaction between body weight and behaviour, piglet identity) except sex had a significant effect (p < 0.04 for all). Correlations between repeated measures increased from the first to the second week.Conclusions and Clinical relevanceRepeatability was acceptable only during the second week of testing and measures changed with repeated testing and increased with increasing piglet weight, indicating that time (age) and animal body weight should be taken into account when measuring mechanical (nociceptive) thresholds in piglets. Mechanical (nociceptive) thresholds can be used both for testing the efficacy of anaesthetics and analgesics, and for assessing hyperalgesia in chronic pain states in research and clinical settings.
Flunixin is marketed in several countries for analgesia in adult swine but little is known about its efficacy in piglets. Thirty-two piglets (6-8 days old) were randomized to receive placebo saline (n = 11, group CONTROL) or flunixin meglumine intravenously at 2.2 (n = 11, group MEDIUM) or 4.4 (n = 10, group HIGH) mg/kg, 10 hr after subcutaneous injection of kaolin in the left metacarpal area. A hand-held algometer was used to determine each piglet's mechanical nociceptive threshold (MNT) from both front feet up to 50 hr after treatment (cut-off value of 24.5 newton). Serial venous blood samples were obtained to quantify flunixin in plasma using LC-MS/MS. A PKPD model describing the effect of flunixin on the mechanical nociceptive threshold was obtained based on an inhibitory indirect response model. A two-compartmental PK model was used. A significant effect of flunixin was observed for both doses compared to control group, with 4.4 mg/kg showing the most relevant (6-10 newton) and long-lasting effect (34 hr). The median IC50 was 6.78 and 2.63 mg/ml in groups MEDIUM and HIGH, respectively. The ED50 in this model was 6.6 mg/kg. Flunixin exhibited marked antinociceptive effect on kaolin-induced inflammatory hyperalgesia in piglets.
Following intravenous dose of 6mg/kg racemic ketoprofen, the chiral pharmacokinetics of ketoprofen was investigated in eight piglets aged 6 and 21days old. S-ketoprofen predominated over R-ketoprofen in plasma of the piglets in both age groups. The volumes of distribution of S-ketoprofen for the 6- and 21-day-old piglets were 241.7 (211.3-276.5) mL/kg and 155.0 (138.7-173.1) mL/kg, respectively, while the corresponding parameters for R-ketoprofen were 289.2 (250.3-334.2) mL/kg and 193.0 (168.7-220.8) mL/kg. The clearances of R-ketoprofen [948.4 (768.0-1171.2) mL/h/kg and 425 (319.1-566.0) mL/h/kg for the 6- and 21-day-old piglets, respectively] were significantly higher compared to the clearances of S-ketoprofen [57.3 (46.6-70.4) mL/h/kg and 33.8 (27.0-42.2) mL/h/kg for 6- and 21-day-old piglets, respectively]. The elimination half-life of S-ketoprofen was 3.4h for both age groups, while the elimination half-life of R-ketoprofen was 0.2h for the 6-day-old and 0.4h for the 21-day-old piglets. The clearances of both R- and S-ketoprofen were significantly higher in the 6-day-old piglets compared to when they were 21 days old. Furthermore, the volumes of distribution were larger in the youngest age group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.