The action of PRP is characterized by the pronounced activation of the background activity (BA) of the brain spinal cord, and the degree of the activity depends on BA initial level. The typical peculiarity of Vipera raddei venom influence is the initial increase in frequency of BA with subsequent depression. A preliminary injection of PRP has a protective effect at subsequent influence of venom. In animals with hemisection the PRP increases the decreased activity of neurons on injury side. Taking into consideration the protective peculiarities of PRP in the relationship to snake venom and the possibility of the latter to stabilize and prolong the action of drugs (in the case of PRP) combined with them, it is supposed that the mentioned use of the combination in clinical practice will be perspective. The data obtained testify the PRP to be a neuroprotector against many toxic compounds formed in organism (glutamate, ceramid, beta-amyloid neurotoxisity, etc.). Investigations in this aspect are still in the process.
The comparative study has been carried out on hypothalamic neurohormone (proline-rich polypeptides-PRP) and synthetic glucocorticoid dexamethasone (DEX) protective properties at the systemic (i/m) administration. Both background and evoked electrical activity (on n.ischiadicus stimulation) of single neurons in the lumbo-sacral part (laminae II-VI and VII-VIII by Rexed) and field potentials (FP) of spinal cord were recorded during acute experiments on intact spinal rats, subjected to Vipera Raddei (VR) venom intoxication, and chronic spinal cord trauma (hemisection). The action of PRP was characterized by the pronounced activation of the background activity (BA) with adaptive effect, depending on dose and initial level of BA, by results of the statistical analysis. A high effect is received from comparatively small doses. For comparison it was used strong glucocorticoid DEX, possessing single-directed but less expressed excitative action on investigated spinal cord neurons. The initial increase of BA frequency with subsequent depression was the typical symptom of venom influence. A protective effect of preliminary PRP injection is revealed on the succeeding VR venom influence. Use of PRP and DEX causes the increase of reduced activity of neurons on the injury side of animals with spinal cord hemisection. It provides the possibility of the therapeutic utilization. It was revealed considerably more expressed PRP action on neurodegenerative process connected to spinal cord injury (in comparison with DEX). The influence of hormones was compared in identical conditions of experiments on non-injured (control) and injured sides. Taking into consideration revealed protection characteristic of PRP and also the ability of snake venom to stabilize and to prolong its action combined with these preparations, the assumption is made on prospective use of the specified combination in clinical practice.
A study of separate and combined actions of cobra venom (CV) and a new hypothalamic proline-rich polypeptide (PRP) isolated from magnocellular cells (NPV and NSO) on intoxication- and trauma-induced neuronal injury (during 3-4 weeks after hemisection with and without PRP treatment) was carried out. The registration of background and evoked impulse activity flow, changes in spinal cord (SC) inter- and motoneurons, responding to flexor, extensor, and mixed nerve stimulation in both acute and chronic experimental neurodegeneration was performed. The facilitating effect of PRP on the abovementioned neurons was revealed. High doses of CV that evoked the neurodegenerative changes demonstrated an inhibitory effect. In this case PRP treatment both before and after intoxication restored electrical neuronal activity to baseline level and higher. These results are evidence of protective action of PRP. The low doses of CV induced a facilitating effect. The combination of CV and PRP displayed an additive facilitating effect; in a number of cases the repeated administration of CV led to decrease of significant PRP effect till baseline level (for example, the inhibition after primary response prior to secondary late discharge). Greater liability of the secondary early and late long-time discharges of poststimulus responses, differently expressed in various neuron types of SC to chemical influences is of interest. PRP-induced inhibition of the paroxysmal activity related with CV action is also very interesting. Morpho-functional experiments with SC injury demonstrated the abolition of difference in the background and evoked SC neuronal activity below the section and on intact symmetric side after daily PRP administration for 3 weeks. PRP hindered the scar formation and activated neuroglia proliferation; it promoted white matter element growth, hampered the degeneration of cellular elements, and protected against tissue stress. Our results favor the combined use of PRP and CV in clinical practice for the treatment of neurodegeneration of toxic and traumatic origin, as well as specific neurodegenerative diseases such as Alzheimer's.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.