As chip multiprocessor (CMP) has become the mainstream in processor architectures, Intel and AMD have introduced their dual-core processors. In this paper, performance measurement on an Intel Core 2 Duo, an Intel Pentium D and an AMD Athlon 64 Â 2 processor are reported. According to the design specifications, key derivations exist in the critical memory hierarchy architecture among these dualcore processors. In addition to the overall execution time and throughput measurement using both multi-program-med and multithreaded workloads, this paper provides detailed analysis on the memory hierarchy performance and on the performance scalability between single and dual cores. Our results indicate that for better performance and scalability, it is important to have (1) fast cacheto-cache communication, (2) large L2 or shared capacity, (3) fast L2 to core latency, and (4) fair cache resource sharing. Three dual-core processors that we studied have shown benefits of some of these factors, but not all of them. Core 2 Duo has the best performance for most of the workloads because of its microarchitecture features such as the shared L2 cache. Pentium D shows the worst performance in many aspects due to its technology-remap of Pentium 4 without taking the advantage of on-chip communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.