Light affects animal physiology and behavior more than simply through classical visual, image-forming pathways. Nonvisual photoreception regulates numerous biological systems, including circadian entrainment, DNA repair, metabolism, and behavior. However, for the majority of these processes, the photoreceptive molecules involved are unknown. Given the diversity of photophysiological responses, the question arises whether a single photopigment or a greater diversity of proteins within the opsin superfamily detect photic stimuli. Here, a functional genomics approach identified the full complement of photopigments in a highly light-sensitive model vertebrate, the zebrafish (Danio rerio), and characterized their tissue distribution, expression levels, and biochemical properties. The results presented here reveal the presence of 42 distinct genes encoding 10 classical visual photopigments and 32 nonvisual opsins, including 10 novel opsin genes comprising four new pigment classes. Consistent with the presence of light-entrainable circadian oscillators in zebrafish, all adult tissues examined expressed two or more opsins, including several novel opsins. Spectral and electrophysiological analyses of the new opsins demonstrate that they form functional photopigments, each with unique chromophore-binding and wavelength specificities. This study has revealed a remarkable number and diversity of photopigments in zebrafish, the largest number so far discovered for any vertebrate. Found in amphibians, reptiles, birds, and all three mammalian clades, most of these genes are not restricted to teleosts. Therefore, nonvisual light detection is far more complex than initially appreciated, which has significant biological implications in understanding photoreception in vertebrates.
Zebrafish tissues and cells have the unusual feature of not only containing a circadian clock, but also being directly light-responsive. Several zebrafish genes are induced by light, but little is known about their role in clock resetting or the mechanism by which this might occur. Here we show that Cryptochrome 1a (Cry1a) plays a key role in light entrainment of the zebrafish clock. Intensity and phase response curves reveal a strong correlation between light induction of Cry1a and clock resetting. Overexpression studies show that Cry1a acts as a potent repressor of clock function and mimics the effect of constant light to ''stop'' the circadian oscillator. Yeast two-hybrid analysis demonstrates that the Cry1a protein interacts directly with specific regions of core clock components, CLOCK and BMAL, blocking their ability to fully dimerize and transactivate downstream targets, providing a likely mechanism for clock resetting. A comparison of entrainment of zebrafish cells to complete versus skeleton photoperiods reveals that clock phase is identical under these two conditions. However, the amplitude of the core clock oscillation is much higher on a complete photoperiod, as are the levels of light-induced Cry1a. We believe that Cry1a acts on the core clock machinery in both a continuous and discrete fashion, leading not only to entrainment, but also to the establishment of a high-amplitude rhythm and even stopping of the clock under long photoperiods.entrainment ͉ oscillator ͉ phase shift ͉ photoperiod
Biological clocks have evolved as an adaptation to life on a rhythmic planet, synchronising physiological processes to the environmental light-dark cycle. Here we examine circadian clock function in Mexican blind cavefish Astyanax mexicanus and its surface counterpart. In the lab, adult surface fish show robust circadian rhythms in per1, which are retained in cave populations, but with substantial alterations. These changes may be due to increased levels of light-inducible genes in cavefish, including clock repressor per2. From a molecular standpoint, cavefish appear as if they experience 'constant light' rather than perpetual darkness. Micos River samples show similar per1 oscillations to those in the lab. However, data from Chica Cave shows complete repression of clock function, while expression of several lightresponsive genes is raised, including DNA repair genes. We propose that altered expression of light-inducible genes provides a selective advantage to cavefish at the expense of a damped circadian oscillator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.