The center-to-limb variation (CLV) describes the brightness of the stellar disk as a function of the limb angle. Across strong absorption lines, the CLV can vary quite significantly. We obtained a densely sampled time series of high-resolution transit spectra of the active planet host star HD 189733 with UVES. Using the passing planetary disk of the hot Jupiter HD 189733 b as a probe, we study the CLV in the wings of the Ca H and K and Na D 1 and D 2 Fraunhofer lines, which are not strongly affected by activity-induced variability.In agreement with model predictions, our analysis shows that the wings of the studied Fraunhofer lines are limb brightened with respect to the (quasi-)continuum. The strength of the CLV-induced effect can be on the same order as signals found for hot Jupiter atmospheres. Therefore, a careful treatment of the wavelength dependence of the stellar CLV in strong absorption lines is highly relevant in the interpretation of planetary transit spectroscopy.
Context. During primary transits, the spectral signatures of exoplanet atmospheres can be measured using transmission spectroscopy. We can obtain information on the upper atmosphere of these planets by investigating the exoplanets' excess sodium absorption in the optical region. However, a number of factors can affect the observed sodium absorption signature. We present a detailed model correcting for systematic biases to yield an accurate depth for the sodium absorption in HD 189733b. Aims. The goal of this work is to accurately measure the atomspheric sodium absorption light curve in HD 189733b, correcting for the effects of stellar differential limb-darkening, stellar activity, and a "bump" caused by the changing radial velocity of the exoplanet. In fact, owing to the high cadence and quality of our data, it is the first time that the last feature can be detected even by visual inspection. Methods. We use 244 high-resolution optical spectra taken by the UVES instrument mounted at the VLT. Our observations cover a full transit of HD 189733b, with a cadence of 45 s. To probe the transmission spectrum of sodium we produce excess light curves integrating the stellar flux in passbands of 1 Å, 1.5 Å, and 3 Å inside the core of each sodium D-line. We model the effects of external sources on the excess light curves, which correspond to an observed stellar flare beginning close to mid-transit time and the wavelength dependent limb-darkening effects. In addition, by characterizing the effect of the changing radial velocity and Doppler shifts of the planetary sodium lines inside the stellar sodium lines, we estimate the depth and width of the exoplanetary sodium feature. Results. We estimate the shape of the planetary sodium line by a Gaussian profile with an equivalent width of ∼0.0023 ± 0.0010 Å, thereby confirming the presence of sodium in the atmosphere of HD 189733b with excess absorption levels of 0.72 ± 0.25%, 0.34 ± 0.11%, and 0.20 ± 0.06% for the integration bands of 1 Å, 1.5 Å, and 3 Å, respectively. Using the equivalent width of the planetary sodium line, we produce a first order estimate of the number density of sodium in the exoplanet atmosphere.
Fulfilling the goals of space-based exoplanetary transit surveys, like Kepler and TESS, is impossible without ground-based spectroscopic follow-up. In particular, the first-step vetting of candidates could easily necessitate several hundreds of hours of telescope time -an area where 2-m class telescopes can play a crucial role. Here, we describe the results from the science verification of the Ondřejov Echelle Spectrograph (OES) installed on the 2-m Perek telescope. We discuss the performance of the instrument as well as its suitability for the study of exoplanetary candidates from space-based transit surveys. In spite of being located at an average European observing site, and originally being conceived for the study of variable stars, OES can prove to be an important instrument for the exoplanetary community in the TESS and PLATO era -reaching accuracies of a few tens of m/s with reasonable sampling and signal-to-noise for sources down to V∼13. The stability of OES is demonstrated via long-term monitoring of the standard star HD 109358, while its validity for exoplanetary candidate verification is shown using three K2 candidates EPIC 210925707, EPIC 206135267 and EPIC 211993818, to reveal that they are false positive detections. ‡ This article is based on the data collected with Perek 2-m telescope. Kabath et al. 2019 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.