BACKGROUND A number of recent studies have identified interleukin (IL)‐6 as an important regulator of prostate cancer growth. Here, we investigate the potential interaction of IL‐6 with phosphatidylinositol (PI)‐3 kinase, a key growth regulatory enzyme, in prostate cancer cell lines. METHODS Tyrosine phosphorylation of p85, the regulatory subunit of PI‐3 kinase, in the human prostate cancer cell lines LNCaP and PC‐3 was assessed by sequential immunoprecipitation with anti‐p85 antibody and immunoblotting with anti‐phosphotyrosine. The effects of wortmannin, an inhibitor of PI‐3 kinase, and/or IL‐6 on cell growth were assessed by MTT assays. DNA laddering experiments were performed to assay for programmed cell death. RESULTS Tyrosine phosphorylation of p85 is upregulated by IL‐6 in both LNCaP and PC‐3. IL‐6 promotes coprecipitation of p85 with gp130, the signal‐transducing component of the IL‐6 receptor. Inhibition of PI‐3 kinase with wortmannin induces programmed cell death in PC‐3 cells. In contrast, wortmannin has no effect on LNCaP growth when used alone; however, combined with IL‐6, wortmannin promotes apoptosis in these cells. CONCLUSIONS PI‐3 kinase is involved in IL‐6 signal transduction and delivers an antiapoptotic signal in human prostate cancer cell lines. Prostate 42:1–7, 2000. © 2000 Wiley‐Liss, Inc.
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
In the version of this article initially published, the name of Ana Margarita Baldión-Elorza, of the SCOURGE Consortium, appeared incorrectly (as Ana María Baldion) and has now been amended in the HTML and PDF versions of the article.
Background:Rheumatoid arthritis (RA) is a chronic, inflammatory synovitis based systemic disease of unknown etiology1. The genes and pathways in the inflamed synovium of RA patients are poorly understood.Objectives:This study aims to identify differentially expressed genes (DEGs) associated with the progression of synovitis in RA using bioinformatics analysis and explore its pathogenesis2.Methods:RA expression profile microarray data GSE89408 were acquired from the public gene chip database (GEO), including 152 synovial tissue samples from RA and 28 healthy synovial tissue samples. The DEGs of RA synovial tissues were screened by adopting the R software. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Protein-protein interaction (PPI) networks were assembled with Cytoscape software.Results:A total of 654 DEGs (268 up-regulated genes and 386 down-regulated genes) were obtained by the differential analysis. The GO enrichment results showed that the up-regulated genes were significantly enriched in the biological processes of myeloid leukocyte activation, cellular response to interferon-gamma and immune response-regulating signaling pathway, and the down-regulated genes were significantly enriched in the biological processes of extracellular matrix, retinoid metabolic process and regulation of lipid metabolic process. The KEGG annotation showed the up-regulated genes mainly participated in the staphylococcus aureus infection, chemokine signaling pathway, lysosome signaling pathway and the down-regulated genes mainly participated in the PPAR signaling pathway, AMPK signaling pathway, ECM-receptor interaction and so on. The 9 hub genes (PTPRC, TLR2, tyrobp, CTSS, CCL2, CCR5, B2M, fcgr1a and PPBP) were obtained based on the String database model by using the Cytoscape software and cytoHubba plugin3.Conclusion:The findings identified the molecular mechanisms and the key hub genes of pathogenesis and progression of RA.References:[1]Xiong Y, Mi BB, Liu MF, et al. Bioinformatics Analysis and Identification of Genes and Molecular Pathways Involved in Synovial Inflammation in Rheumatoid Arthritis. Med Sci Monit 2019;25:2246-56. doi: 10.12659/MSM.915451 [published Online First: 2019/03/28][2]Mun S, Lee J, Park A, et al. Proteomics Approach for the Discovery of Rheumatoid Arthritis Biomarkers Using Mass Spectrometry. Int J Mol Sci 2019;20(18) doi: 10.3390/ijms20184368 [published Online First: 2019/09/08][3]Zhu N, Hou J, Wu Y, et al. Identification of key genes in rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Medicine (Baltimore) 2018;97(22):e10997. doi: 10.1097/MD.0000000000010997 [published Online First: 2018/06/01]Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.