The purposes of this study were 1) to investigate glucose tolerance and insulin action immediately after exercise and 2) to determine how long the improved glucose homeostatic mechanisms observed 12-16 h after exercise persist. Nine (seven men, two women) moderately trained middle-aged (51 +/- 3 yr) subjects performed 45 min of exercise at 73 +/- 2% of peak O2 uptake for 5 days, followed by 7 days of inactivity. Oral glucose tolerance tests (OGTT; 75 g) were performed immediately postexercise (IPE; approximately 30 min) after the final exercise bout and 1, 3, 5, and 7 days after exercise. The incremental area under the plasma glucose curve was markedly higher IPE (355 +/- 82 mM.min) compared with those on days 1 (136 +/- 57 mM.min; P < 0.05) and 3 (173 +/- 62 mM.min; P < 0.05). The glucose area was significantly higher on days 5 (213 +/- 80 mM.min) and 7 (225 +/- 84 mM.min) compared with those on days 1 and 3 (P < 0.05). The incremental insulin area IPE (3,729 +/- 1,104 microU.ml-1.min) was 43% higher compared with that on day 1 (2,603 +/- 635 microU.ml-1.min; P < 0.05) and 66% higher compared with that on day 3 (2,240 +/- 517 microU.ml-1.min; P < 0.05). The insulin area increased to 3,616 +/- 617 microU.ml-1.min after 5 days of inactivity (P < 0.05). An additional 48 h of inactivity did not result in any further increase in the plasma insulin response.(ABSTRACT TRUNCATED AT 250 WORDS)
The effects of an exhaustive bout of eccentric exercise on insulin secretion and action were determined using the hyperglycemic clamp technique. Clamps were performed on eight healthy men after 7 days of inactivity and approximately 36 h after a bout of eccentric exercise. Eccentric exercise consisted of 10 sets of 10 repetitions of combined knee extensions and flexions for each leg at a mean torque 84 +/- 5% of peak concentric torque. During the hyperglycemic clamp procedure, plasma glucose concentration was acutely raised to 10 mmol/l and was maintained near this level for 120 min. Arterialized blood samples were obtained from a heated hand vein to determine plasma glucose and insulin concentrations. Eccentric exercise appeared to produce marked muscle damage, as indicated by a 50-fold increase in plasma creatine phosphokinase (100 +/- 17 vs. 5,209 +/- 3,811 U/l, P < 0.001) and subjective reports of muscle soreness. Peak insulin response during the early phase (0-10 min) of the hyperglycemic clamp was higher after eccentric exercise (183 +/- 38 microU/ml) than after the control clamp (100 +/- 23 microU/ml, P < 0.005). Late-phase (10- to 120-min) insulin response was not altered after eccentric exercise. Peak plasma C-peptide concentrations were higher during the early phase (5.0 +/- 0.7 vs. 4.3 +/- 0.8 ng/ml, P < 0.05) and the late phase (7.5 +/- 0.9 vs. 5.4 +/- 0.6 ng/ml, P < 0.05). Prior eccentric exercise had no significant effect on whole body glucose disposal or glucose disposal rate adjusted for prevailing plasma insulin concentration. These data provide evidence that a single bout of eccentric exercise causes an increase in pancreatic beta-cell insulin secretion in response to hyperglycemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.