A series of experimental investigations on the studies related to transient- and steady-state cooling performance from the horizontally heated heat sinks with a confined slot jet impingement have been conducted. The relevant parameters influencing the transient convective cooling performance include the steady-state Grashof number, ratio of jet separation distance to nozzle width, ratio of heat sink height to nozzle width, and jet Reynolds number. The transient heat transfer behaviors such as the temperature distribution, local and average Nusselt numbers on the heated heat sinks have been systematically explored. Two empirical correlations of steady-state local and average Nusselt numbers are presented. Furthermore, a complete composite correlation of steady-state average Nusselt number for mixed convection due to jet impingement and buoyancy is proposed. This empirical correlation obtained by data regression is in good agreement with the experimental data. The maximum and average regression errors are 7.46% and 2.87%, respectively.
Thermal characteristics for a horizontal heated chip mounted with three types of nominally flat silicon-based heat spreaders have been systematically investigated. They include the natural convective and radiative heat transfer from the top surface of the heat spreaders to the external ambient, external thermal resistance, and maximum overall thermal resistance. In the aspect of natural convection, an axisymmetric bowl-shaped profile of local Nusselt number is achieved, and the highest convective heat transfer performance occurs at the location near the rim of the heat spreader. The effect of surface roughness on both local and average natural convective heat transfer behaviors from nominally flat silicon-based spreader surfaces to the external ambient is not significant. Two new generalized correlations of local and average Nusselt numbers for various heat spreader surfaces are presented. The contributions of convection and radiation on the total heat dissipated from the top surface of the heat spreader to the ambient are about 72% and 28%, respectively. The effect of surface roughness on external thermal resistance for nominally flat silicon-based surfaces is not significant. The influence of the conductive thermal resistance within the silicon-based heat spreader on the maximum thermal resistance is not significant. The maximum thermal resistance is mainly dominated by external thermal resistance for flat nominally silicon-based heat spreaders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.