BackgroundDevelopmental exposures to organophosphate pesticides are virtually ubiquitous. These agents are neurotoxicants, but recent evidence also points to lasting effects on metabolism.ObjectivesWe administered parathion to neonatal rats. In adulthood, we assessed the impact on weight gain, food consumption, and glucose and lipid homeostasis, as well as the interaction with the effects of a high-fat diet.MethodsNeonatal rats were given parathion on postnatal days 1–4 using doses (0.1 or 0.2 mg/kg/day) that straddle the threshold for barely detectable cholinesterase inhibition and the first signs of systemic toxicity. In adulthood, animals were either maintained on standard lab chow or switched to a high-fat diet for 7 weeks.ResultsIn male rats on a normal diet, the low-dose parathion exposure caused increased weight gain but also evoked signs of a prediabetic state, with elevated fasting serum glucose and impaired fat metabolism. The higher dose of parathion reversed the weight gain and caused further metabolic defects. Females showed greater sensitivity to metabolic disruption, with weight loss at either parathion dose, and greater imbalances in glucose and lipid metabolism. At 0.1 mg/kg/day parathion, females showed enhanced weight gain on the high-fat diet; This effect was reversed in the 0.2-mg/kg/day parathion group, and was accompanied by even greater deficits in glucose and fat metabolism.ConclusionsNeonatal low-dose parathion exposure disrupts glucose and fat homeostasis in a persistent and sex-selective manner. Early-life toxicant exposure to organophosphates or other environmental chemicals may play a role in the increased incidence of obesity and diabetes.
Aphids, among the most destructive insects to world agriculture, are mainly controlled by organophosphate insecticides that disable the catalytic serine residue of acetylcholinesterase (AChE). Because these agents also affect vertebrate AChEs, they are toxic to non-target species including humans and birds. We previously reported that a cysteine residue (Cys), found at the AChE active site in aphids and other insects but not mammals, might serve as a target for insect-selective pesticides. However, aphids have two different AChEs (termed AP and AO), and only AP-AChE carries the unique Cys. The absence of the active-site Cys in AO-AChE might raise concerns about the utility of targeting that residue. Herein we report the development of a methanethiosulfonate-containing small molecule that, at 6.0 µM, irreversibly inhibits 99% of all AChE activity extracted from the greenbug aphid (Schizaphis graminum) without any measurable inhibition of the human AChE. Reactivation studies using β-mercaptoethanol confirm that the irreversible inhibition resulted from the conjugation of the inhibitor to the unique Cys. These results suggest that AO-AChE does not contribute significantly to the overall AChE activity in aphids, thus offering new insight into the relative functional importance of the two insect AChEs. More importantly, by demonstrating that the Cys-targeting inhibitor can abolish AChE activity in aphids, we can conclude that the unique Cys may be a viable target for species-selective agents to control aphids without causing human toxicity and resistance problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.