Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1 – 8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4 seconds). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multipexability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time.
Unpredictable trends of charge mobility (μ) in multicyclic heteroarenes-contained polymers remain an obstacle in designing high performance polymers used in polymeric field effect transistors (PFETs). The roles of the comonomeric units in reaching high hole mobility (μ h ) of copolymers containing a heptacyclic arene unit, dithienocyclopentacarbazole (DTCC) were investigated in this study. A series of four DTCC-based alternating copolymers, PDTCC-1T, PDTCC-3T, PDTCC-BDT, and PDTCC-TT, were synthesized from the Pd-catalyzed copolymerizations between DTCC and comonomeric units including thiophene (1T), terthiophene (3T), benzodithiophene (BDT) and thienothiophene (TT) units. Among the four DTCC-based alternating copolymers, highest mobility of 1.36 × 10 −2 cm 2 V −1 s −1 was reached in PDTCC-3T. Optoelectronic and 2D-WAXD studies revealed that strong electronic interaction and highly ordered solid-state structure were only observed in PDTCC-3T. It is attributed to the combination of two axisymmertric units, DTCC and 3T, linearized the polymer backbone, leading to a compact solid-state packing and high μ h , while centrosymmertic comonomeric units, BDT and TT curved the polymer backbones of PDTCC-BDT and PDTCC-TT, which decreases solid-state order and μ h . Furthermore, the short axisymmeritric 1T although results in a linear backbone of PDTCC-1T, comparing to 3T, it is too short to effectively reduce interchain steric hindrance caused by the solubilizing octyl chains on DTCC. Thus, effective π−π stacking is hindered in PDTCC-1T, resulting in low μ h . The macroscopic performances of μ h s agreed well with the optoelectronic and 2D-WAXD studies. It is concluded that the linear backbone of DTCC copolymers is the prerequisite to reach ordered solid-state packing, which facilitate effective charge transport, and it depends on the prudent choose on the symmetry of the comonomeric unit. In addition, balance between the solubility and adequate crowdedness of lateral side chains is essential for a PFET material to be not only easily processed, but also effectively π−π stack.
Described herein is a unique and inexpensive method that outperforms commercial methods that amplify the streptavidin-biotin recognition event. Amplification induced by streptavidin and biotinylated protein causes the formation of a large detectable polymer. This approach enjoys a 100-fold decrease in detection limit in comparison with the commercial methods.
This study examined the performance of a flexible polymer/multi-walled carbon nanotube (MWCNT) composite sensor array as a function of operating temperature. The response magnitudes of a cost-effective flexible gas sensor array equipped with a heater were measured with respect to five different operating temperatures (room temperature, 40 °C, 50 °C, 60 °C, and 70 °C) via impedance spectrum measurement and sensing response experiments. The selected polymers that were droplet cast to coat a MWCNT conductive layer to form two-layer polymer/MWCNT composite sensing films included ethyl cellulose (EC), polyethylene oxide (PEO), and polyvinylpyrrolidone (PVP). Electrical characterization of impedance, sensing response magnitude, and scanning electron microscope (SEM) morphology of each type of polymer/MWCNT composite film was performed at different operating temperatures. With respect to ethanol, the response magnitude of the sensor decreased with increasing operating temperatures. The results indicated that the higher operating temperature could reduce the response and influence the sensitivity of the polymer/MWCNT gas sensor array. The morphology of polymer/MWCNT composite films revealed that there were changes in the porous film after volatile organic compound (VOC) testing.
There is a need to develop a chemiresistive gas sensor equipped with a thermostat over a wide area for the sensor, which can protect the sensor from the influence of ambient temperature due to the uniform temperature of the thermostat. In this paper, we demonstrated an acetone gas sensor based on a polyethylene glycol (PEG)/Multi-walled Carbon Nanotubes (MWCNTs) composite film, which was equipped with a thermostat. The sensor was operated at modest working temperatures for sensor sensitivity enhancement. The optimum design of the polyimide-based thermostat with widely uniform thermal distribution was investigated in detail. It was found that the temperature uniformity of the thermostat was achieved using double spiral geometry. The experimental results of the sensor response showed that the PEG/MWCNTs composite film with a moderate working temperature revealed a higher sensitivity than that without thermal treatment. Moreover, the sensing mechanisms of the PEG/MWCNTs composite gas sensor to acetone vapor were studied as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.