Recombination processes in Ga1−xInxNyAs1−y/GaAs multiple quantum wells (MQWs) were investigated as function of the nitrogen molar fraction. We found a pronounced S-shaped behavior for the temperature-dependent shift of the photoluminescence emission similar to the ternary nitrides InGaN and AlGaN. This is explained by exciton localization at potential fluctuations. Time-resolved measurements at 4 K reveal an increase of the decay time with decreasing emission energy. A model based on lateral transfer processes to lower-energy states is proposed to explain this energy dependence. The formation of tail states in the Ga1−xInxNyAs1−y/GaAs MQWs is attributed to nitrogen fluctuations.
The optical properties of InGaAsN/GaAs multiple quantum wells were investigated as a function of the nitrogen molar fraction. Time-integrated and time-resolved photoluminescence investigations demonstrate that localization effects at potential fluctuations play an important role in understanding the exciton dynamics. The results are supported by temperature-dependent photoluminescence and photoluminescence excitation investigations. In the last part, the state of the art of the 1.3 mm laser development is overviewed. #
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.