Keratins are the characteristic structural proteins of the highly cornified epidermis of the skin, feathers, and hoof. Keratin proteins provide the structural basis for the unique properties of the biomaterial horn and its protective function against a wide range of environmental factors. Hoof horn is produced through a complex process of differentiation (keratinization) of epidermal cells. Formation and biochemical binding of keratin proteins and synthesis and exocytosis of intercellular cementing substance (ICS) are the hallmarks of keratinization. It is finalized by the programmed death of the living epidermal cells, i.e., cornification, that turns the living epidermal cells into dead horn cells. The latter become connected by the intercellular cementing substance. The functional integrity of hoof horn essentially depends on a proper differentiation, i.e., keratinization of hoof epidermal cells. Keratinization of hoof epidermis is controlled and modulated by a variety of bioactive molecules and hormones. This process is dependent on an appropriate supply of nutrients, including vitamins, minerals, and trace elements. Regulation and control of differentiation and nutrient flow to the epidermal cells play a central role in determining the quality and, consequently, the functional integrity of hoof horn. Decreasing nutrient supply to keratinizing epidermal cells leads to horn production of inferior quality and increased susceptibility to chemical, physical, or microbial damage from the environment. A growing body of evidence suggests that hormones, vitamins, minerals, and trace elements play critical roles in the normal development of claw horn and correct keratin formation.
Thirty-six crossbred steers (288 +/- 3.7 kg initial BW) were used to determine the effect of Cr, as chromium-L-methionine, on glucose tolerance and insulin sensitivity in beef calves. Calves were fed a control diet or the diet supplemented with 400 or 800 microg Cr/kg of diet as chromium-L-methionine. Calves were kept in drylots (six calves/pen; two pens/dietary treatment). Steers were caught twice a day in locking headgates and individually fed their respective diets for a period of 22, 23, or 24 d prior to the metabolic challenges. Calves received a totally mixed diet containing 54% corn, 38% cottonseed hulls, and 5% soybean meal. On d 21, 22, and 23, four calves/dietary treatment were fitted with an indwelling jugular catheter. Approximately 24 h after catheterization, an intravenous glucose tolerance test (500 mg glucose/kg of BW), followed 5 h later by an intravenous insulin challenge test (0.1 IU insulin/kg of BW), was conducted. There was no effect (P > 0.10) of dietary treatment on ADG or ADFI. During the intravenous glucose tolerance test, serum insulin concentrations were increased by supplemental chromium-L-methionine (linear effect of Cr, P < 0.05). There was a time x treatment interaction (P < 0.05) on plasma glucose concentrations after the glucose infusion. Plasma glucose concentrations of calves fed 400 microg Cr/kg of diet were lower than those of controls and calves supplemented with 800 microg Cr/kg of diet (quadratic effect of Cr, P < 0.05) 5 and 10 min after the glucose infusion. Supplemental chromium-L-methionine increased the glucose clearance rate from 5 to 10 min after the insulin challenge test (linear effect of Cr, P < 0.05). Glucose half-life from 5 to 10 min after the insulin infusion was also decreased by supplemental chromium-L-methionine (linear effect of Cr, P < 0.10). These data indicate that supplemental Cr, as chromium-L-methionine, increased glucose clearance rate after an insulin infusion and increased the insulin response to an intravenous glucose challenge in growing calves with functioning rumens.
An experiment was conducted to compare the effects of organic (Zn AA complex, ZnAA) and inorganic Zn (ZnSO4) sources on sows and their progeny during gestation and lactation and on the pigs during the nursery period. The dietary treatments were 1) a corn-soybean meal diet with 100 ppm Zn from ZnSO4 (control); 2) diet 1 + 100 ppm additional Zn from ZnSO4; and 3) diet 1 + 100 ppm additional Zn from ZnAA. Dietary additions were on an as-fed basis. Thirty-one primaparous and multiparous sows were allotted to the treatment diet beginning on d 15 of gestation and continuing through lactation. At weaning (d 17 of age), 202 pigs (63, 55, and 84 pigs for treatments 1 to 3, respectively) were allotted to the same dietary treatment as their dam. The pigs were fed a 3-phase diet regimen during the nursery period: d 0 to 7 (phase I); d 7 to 21 (phase II); and d 21 to 28 (phase III). At weaning and at the end of phase III, 1 gilt per replicate was killed, and the left front foot, liver, pancreas, and entire small intestine were removed. Diet had no effect (P > 0.10) on any response during gestation. During lactation, there was an increase (P < 0.10) in litter birth weight in sows fed ZnAA compared with those fed the control or ZnSO4 diets. The sows fed ZnAA nursed more pigs (P < 0.10) than sows fed the ZnSO4 diet, and they weaned more pigs (P < 0.05) than sows fed the control diet. Jejunal villus height of the weaned pigs from sows fed ZnSO4 was increased (P < 0.05) compared with those from the sows fed the control diet. During the nursery period, growth performance was not affected (P > 0.10) by diet. Pigs fed ZnSO4 had greater duodenal villus width (P < 0.05) than those fed ZnAA, and pigs fed ZnSO4 or the control diet had greater ileal villus width (P < 0.05) than those fed ZnAA. Pigs fed ZnSO4 or ZnAA had more (P < 0.05) bone Zn than those fed the control diet. Liver Zn concentration was greatest in pigs fed ZnSO4, followed by those fed ZnAA, and then by those fed the control diet (P < 0.05). Pancreas Zn was increased (P < 0.05) in pigs fed ZnSO4 compared with those fed the control diet. These results suggest that 100 ppm Zn in trace mineral premixes provides adequate Zn for optimal growth performance of nursery pigs, but that 100 ppm additional Zn from ZnAA in sow diets may increase pigs born and weaned per litter.
Four experiments were conducted to determine the interactive effects of pharmacological amounts of Zn from ZnO and Cu from organic (Cu-AA complex; Cu-AA) or inorganic (CuSO(4)) sources on growth performance of weanling pigs. The Cu was fed for 4 (Exp. 1) or 6 (Exp. 2, 3, and 4) wk after weaning, and Zn was fed for 4 (Exp. 1) or 2 (Exp. 2, 3, and 4) wk after weaning. Treatments were replicated with 7 pens of 5 or 6 pigs per pen (19.0 ± 1.4 d of age and 5.8 ± 0.4 kg of BW, Exp. 1), 12 pens of 21 pigs per pen (about 21 d of age and 5.3 kg of BW, Exp. 2), 5 pens of 4 pigs per pen (20.3 ± 0.5 d of age and 7.0 ± 0.5 kg of BW, Exp. 3), and 16 pens of 21 pigs per pen (about 21 d of age and 5.7 kg of BW, Exp. 4). In Exp. 1 and 2, Cu-AA (0 vs. 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 2 × 2 factorial arrangement. Only Exp. 1 used in-feed antibiotic (165 mg of oxytetracycline and 116 mg of neomycin per kilogram feed), and Exp. 2 was conducted at a commercial farm. In Exp. 3, sources of Cu (none; CuSO(4) at 250 mg/kg of Cu; and Cu-AA at 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 3 × 2 factorial arrangement. In Exp. 4, treatments were no additional Cu, CuSO(4) at 315 mg/kg of Cu, or Cu-AA at 100 mg/kg of Cu to a diet supplemented with 3,000 mg/kg of Zn from ZnO and in-feed antibiotic (55 mg of carbadox per kilogram of feed). In Exp. 1 and 2, both Zn and Cu-AA improved (P < 0.001 to P = 0.03) ADG and ADFI. No interactions were observed, except in wk 1 of Exp. 2, where Zn increased the G:F only in the absence of Cu-AA (Cu-AA × Zn, P = 0.04). A naturally occurring colibacillosis diarrhea outbreak occurred during this experiment. The ZnO addition reduced (P < 0.001) the number of pigs removed and pig-days on antibiotic therapy. In Exp 3, ADFI in wk 2 was improved by Zn and Cu (P < 0.001 and P = 0.09, respectively) with no interactions. In wk 1, G:F was reduced by ZnO only in the absence of Cu (Cu × Zn, P = 0.03). Feeding Zn decreased fecal microbiota diversity in the presence of CuSO(4) but increased it in the presence of Cu-AA (Cu source × Zn, P = 0.06). In Exp. 4, Cu supplementation improved the overall ADG (P = 0.002) and G:F (P < 0.001). The CuSO(4) effect on G:F was greater (P < 0.001) than the Cu-AA effect. Our results indicate that pharmacological amounts of ZnO and Cu (Cu-AA or CuSO(4)) are additive in promoting growth of pigs after weaning.
Crossbred pigs (n = 185) were used to test the effects of dietary Fe supplementation on performance and carcass characteristics of growing-finishing swine. Pigs were blocked by BW, allotted to pens (5 to 6 pigs/pen), and pens (5 pens/block) were allotted randomly to either negative control (NC) corn-soybean meal grower and finisher diets devoid of Fe in the mineral premix, positive control (PC) corn-soybean meal grower and finisher diets with Fe included in the mineral premix, or the PC diets supplemented with 50, 100, or 150 ppm Fe from Availa-Fe (an Fe-AA complex). When the lightest block averaged 118.2 kg, the pigs were slaughtered, and bone-in pork loins were collected during fabrication for pork quality data. During the grower-I phase, there was a tendency for supplemental Fe to reduce ADG linearly (P = 0.10), whereas in the grower-II phase, supplemental Fe tended to increase ADG linearly (P = 0.10). Even though pigs fed NC had greater G:F during the finisher-I phase (P < 0.05) and across the entire trial (P = 0.07), live performance did not (P > or = 0.13) differ among dietary treatments. There were linear increases in 10th-rib fat depth (P = 0.08) and calculated fat-free lean yield (P = 0.06); otherwise, dietary Fe did not (P > 0.19) affect pork carcass muscling or fatness. Moreover, LM concentrations of total, heme, and nonheme Fe were similar (P > 0.23) among treatments. A randomly selected subset of loins from each treatment was further fabricated into 2.5-cm-thick LM chops, placed on styrofoam trays, overwrapped with polyvinyl chloride film, and placed in coffin-chest display cases (2.6 degrees C) under continuous fluorescent lighting (1,600 lx) for 7 d. During display, chops from NC-fed pigs and pigs fed the diets supplemented with 100 ppm Fe tended to have a more vivid (higher chroma value; P = 0.07), redder (higher a* value; P = 0.09) color than LM chops of pigs fed 50 ppm of supplemental Fe. Moreover, greater (P < 0.01) redness:yellowness ratios in chops from pigs supplemented with 100 ppm Fe indicated a more red color than chops from PC-fed pigs or pigs fed diets supplemented with 50 ppm Fe. In conclusion, however, increasing dietary Fe had no appreciable effects on performance, carcass, or LM characteristics, suggesting that current dietary Fe recommendations are sufficient for optimal growth performance, pork carcass composition, and pork quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.