Plasma levels of HDL apo A-I are reduced in individuals with low HDL cholesterol (HDL-C) concentrations as a result of increased fractional catabolic rates (FCRs). To determine the basis for the high apo A-I FCRs, seven subjects with low HDL-C levels (31.0±4.3 mg/dl) were compared with three subjects with high HDL-C levels (72.0±4.5 mg/dl). Each subject received autologous HDL that was labeled directly by the iodinemonochloride method (whole-labeled) and autologous HDL that was labeled by exchange with homologous radiolabeled apo A-I (exchange-labeled). Blood was obtained for 2 wk, specific activities determined, and FCRs (d-'+SD) estimated. In every subject, whether in the low or high HDL-C group, the exchange-labeled FCR was greater than the whole-labeled FCR. The exchange-labeled FCR was higher in the low HDL-C group (0.339±0.043) versus the high HDL-C group (0.234 ±0.047; P < 0.009). The whole-labeled FCR was also greater in the low HDL-C group (0.239±0.023) versus the high HDL-C group (0.161±0.064; P < 0.02). In addition, in both low and high HDL groups ultracentrifugation resulted in more radioactivity in d > 1.210 (as percentage of total plasma counts per minute) with the exchange-labeled tracer than with the wholelabeled tracer (12.55±4.95% vs. 1.02±0.38%; P < 0.003). With both HDL tracers, more radioactivity was found in d > 1.210 in the low versus the high HDL-C groups. When apo A-I catabolism was studied by perfusing isolated rabbit kidneys with whole-labeled HDL, there was twice as much accumulation (cpm/g cortex) of HDL apo A-I isolated from subjects with low HDL-C than from subjects with high HDL-C (P < 0.0025). Finally, HDL that had been isolated from subjects with high levels of HDL-C was triglyceride enriched and exposed to partially purified lipases before perfusion through kidneys. Threefold more apo A-I from modified HDL accumulated in the cortex compared with the unmodified preparation (P < 0.007). The results of these in vivo and ex vivo studies indicate that individuals with low HDL-C levels have more loosely bound, easily exchanged apo A-I and that this exchangeable apo A-I is more readily cleared by the kidney. (J. Clin. Invest.
Lipoprotein lipase (LPL), the rate-limiting enzyme for hydrolysis of plasma lipoprotein triglycerides, is a normal constituent of the arterial wall. We explored whether LPL affects (a) lipoprotein transport across bovine aortic endothelial cells or (b) lipoprotein binding to subendothelial cell matrix (retention). When bovine milk LPL was added to endothelial cell monolayers before addition of "2'I-labeled LDL, LDL transport across the monolayers was unchanged; but, at all concentrations of LDL tested (1-100 jig), LDL retention by the monolayers increased more than fourfold. '251-labeled LDL binding to extracellular matrix increased when LPL was added directly to the matrix or was added to the basolateral side ofthe endothelial cell monolayers. Increased LDL binding required the presence of LPL and was not associated with LDL aggregation. LPL also increased VLDL, but not HDL, retention. Monoclonal anti-LPL IgG decreased both VLDL and LDL retention in the presence of LPL. Lipoprotein transport across the monolayers increased during hydrolysis of VLDL triglyceride (TG). In the presence of LPL and VLDL, VLDL transport across the monolayers increased 18% and LDL transport increased 37%. High molar concentrations of oleic acid to bovine serum albumin (3:1) in the medium increased VLDL transport 30%.LDL transport increased 42% when oleic acid was added to the media. Therefore, LPL primarily increased retention of LDL and VLDL. A less remarkable increase in lipoprotein transport was found during hydrolysis of TG-containing lipoproteins. We hypothesize that LPL-mediated VLDL and LDL retention within the arterial wall potentiates conversion of these lipoproteins to more atherogenic forms. (J. Clin. Invest. 1992.89:373-380.)
Mechanisms that might be responsible for the low levels of high density lipoprotein (HDL) associated with hypertriglyceridemia were studied in an animal model. Specific monoclonal antibodies were infused into female cynomolgus monkeys to inhibit lipoprotein lipase (LPL), the rate-limiting enzyme for triglyceride catabolism. LPL inhibition produced marked and sustained hypertriglyceridemia, with plasma triglyceride levels of 633-1240 mg/dl. HDL protein and cholesterol and plasma apolipoprotein (apo) Al levels decreased; HDL triglyceride (TG) levels increased. The fractional catabolic rate of homologous monkey HDL apolipoproteins injected into LPL-inhibited animals (n = 7) was more than double that of normal animals (0.094±0.010 vs. 0.037±0.001 pools of HDL protein removed per hour, average±SEM). The fractional catabolic rate of low density lipoprotein apolipoprotein did not differ between the two groups of animals. Using HDL apolipoproteins labeled with tyramine-cellobiose, the tissues responsible for this increased HDL apolipoprotein catabolism were explored. A greater proportion of HDL apolipoprotein degradation occurred in the kidneys of hypertriglyceridemic than normal animals; the proportions in liver were the same in normal and LPL-inhibited monkeys.Hypertriglyceridemia due to LPL deficiency is associated with low levels of circulating HDL cholesterol and apo Al. This is due, in part, to increased fractional catabolism of apo Al. Our studies suggest that variations in the rate of LPL-mediated lipolysis of TG-rich lipoproteins may lead to differences in HDL apolipoprotein fractional catabolic rate. (J. Clin. Invest. 1990. 86:463-473.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.