In this paper focused ion beam milling of very shallow nanostructures in silicon and germanium by low energy Ga( + ) ions is studied with respect to ion beam and scanning parameters. It has been found that, using low energy ions, many scanning artefacts can be avoided and, additionally, some physical effects (e.g. redeposition and ion channelling) are significantly suppressed. The structures milled with low energy ions suffer less subsurface ion beam damage (amorphization, formation of voids) and are thus more suitable for selected applications in nanotechnology.
The spectrometric and particle tracking response of the Timepix detector for charged particle detection was examined for energetic (i.e. penetrating) heavy charged particles in a wide range of energies and directions. The aim of this study was to examine the detector's resolving power including particles approaching the minimum-ionizing regime, in particular energetic protons. The per-pixel energy range, of importance namely for heavy charged particles, was also investigated. This work complements and extends the ongoing task to analyze and describe the response and resolving power of the detector in a wide range of particle types, energy (energy loss) and direction. The methodology of event discrimination in terms of these degrees of freedom was expanded and refined. Resolution and event classification were based on analyses of cluster morphology parameters together with spectrometric, tracking and correlated derived quantities such as linearenergy-transfer (LET) and ratio cluster height to cluster path length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.