A new type of a-Si/c-Si heterojunction solar cell, called the HIT (Heterojunction with Intrinsic Thin-layer) solar cell, has been developed based on ACJ (Artificially Constructed Junction) technology. A conversion efficiency of more than 18% has been achieved, which is the highest ever value for solar cells in which the junction was fabricated at a low temperature (<200°C).
Polycrystalline silicon (poly-Si) thin films prepared by the solid phase crystallization (SPC) method were investigated for application as photovoltaic materials. To improve the properties of the poly-Si thin film, two methods were developed to control crystallization. One is the partial doping method, in which starting material of a-Si consists of a doped layer and an undoped layer. We have succeeded in controlling nuclei generation using partial doping, and high mobility of 196 cm2/V·s was obtained at a carrier concentration of 1×1018 cm-3. SPC temperature can also be decreased to 500°C. The other is adoption, for the first time, of a textured substrate which exerted effects on the enlargement of grain size in poly-Si thin films prepared by the SPC method. By combining the partial doping method with the textured substrate, an n-type poly-Si thin-film with the grain size of 6 µm was fabricated which showed the Hall mobility of 623 cm2/V·s (n: 3.0\times1015 cm-3). In a solar cell (thickness: 12 µm) applying this film, a conversion efficiency of 6.2% was obtained and a collection efficiency of 50% was achieved at a wavelength of 900 nm.
For further improvement of conversion efficiency in a-Si solar cells, it is necessary to develop materials with high photosensitivity in the long-wavelength region. A new solid phase crystallization (SPC) method was developed to grow a Si crystal at temperatures as low as 600°C. Using this method, high-quality thin-film polycrystalline silicon (poly-Si) with a Hall mobility of 70 cm2/V·s was obtained. Quantum efficiency in the range of 800 nm ∼ 1000 nm was achieved up to 80% in an experimental solar cell using the n-type poly-Si with a grain size of about 1.5 µm. Therefore, it was found that our SPC method was suitable as a new technique to prepare high-quality solar cell materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.