Four constant viscosity, highly elastic fluids of different viscosity and elasticity levels are presented. The viscosity ranges from 4× 10 -3 to 5.0 Pa s and the Maxwell relaxation time varies from 0.09 to 4.5 s. The steady and dynamic shear properties are determined. These fluids comply with the requirements of the simple fluid theory except for the G' and N1/2 data where a slight deviation is observed. The results suggest the possibility of preparing a wide range of constant viscosity elastic fluids with specific values of viscosity and relaxation time by manipulating polymer molecular parameters as well as polymer concentration, solvent viscosity and salt addition. The effects of each of these parameters on the rheological behaviour are examined.
The effects of solvent environment on the behaviour of a high molecular weight polyisobutylene dissolved in kerosene and various grades of poly-l-butene solvent mixtures are investigated. The dependence of various molecular parameters such as zero-shear viscosity, intrinsic viscosity, specific viscosity, relaxation time and molecular expansion factor, on the polymer concentration, type of solvent and solvent viscosity is studied in the vicinity of dilute and semidilute regions (near the critical concentration c*). The dependence of these parameters on solvent environment follows qualitatively Zimm's molecular model. The dependence on the polymer concentration deviates from this dilute solution theory. The effects of temperature on the zero-shear viscosity and the Maxwell relaxation time are also presented for two PIB solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.