Nuclear microsatellite markers are considered to be among the most powerful tools for assessing genetic resources. To date, a great variety of primers for SSR loci of pines has been developed. As regards Scots pine, selection of neutral steadily amplifiable loci not containing null alleles and their multiplexing are high-priority tasks, as there are no generally accepted multiplex panels of loci for this species. Authors of published multiplexes tend not to use loci due to their unstable amplification or the presence of single nucleotide repeats. The aim of the paper was to create the new multiplexes of reliable previously published pine nSSR loci in view of preliminary data based on the analysis of melting curves of products after Real-Time polymerase chain reaction (PCR) for each locus separately. Initially, microsatellite multiplexes were created using Multiplex Manager 1.0. DNA was extracted by the CTAB method from samples of pine needles. Real-Time PCR was performed in CFX96 thermal cyclers (BIO-RAD, USA). Fragment analysis of PCR products labeled with FAM, HEX and ROX dyes was performed on a 3500 genetic analyzer (Applied Biosystems). GeneScanTM 500 LIZ size standard was used. As a result of the study, 3 multiplexes have been proposed.
Spermatogonia are the precursors of male germ cells. They are a valuable genetic material for the production of transgenic poultry. This technology includes isolation of the spermatogonia from male donor’s testes, transformation, and transplantation of donor cells into the sterilized recipient’s testes. The transplanted spermatogonia subsequently differentiate into male sex cells (sperm). The aim of this study was to optimize the individual stages of donor spermatogonia transplantation into the recipient’s testes to increase the effectiveness of spermatogenesis recovery. In the first stage, the spermatogenesis in male chicken was examined to determine the optimal age for isolation of spermatogonia from testes. Histological examinations of male chicken testes (n = 80 birds) were done for 8 age categories, from 1 week to 3 months. It was found that under the age of 4 weeks, the cell population in the seminiferous tubules of male chickens was represented mainly by Sertoli cells and spermatogonia. Maximum percentage of spermatogonia was 69 ± 3% at 4 weeks. At the next stage, a culture of spermatogonia was obtained. Testes of 3-week-old male chickens were used. Separation of the spermatogonia from other types of cells was based on a differential adhesive capacity. The maximum homogeneity of the cell population was established by transfer (3 times) of the supernatant containing unattached cells after 24 h of cultivation into a new culture dish for further cultivation. The cell population is represented mainly by the spermatogonia (89 ± 3%). The lentiviral transduction (pHAGE vector, ZsGreen under CMV promotor) was used to transform the resulting culture of the spermatogonia. The efficiency of spermatogonia infection with lentiviral particles (TU/mL = 2.5 × 108) was 65 ± 2%. After transformation, spermatogonia were introduced into the testes of busulfan-sterilized recipients. The optimal concentration of busulfan treatment after series of experiments from 40 to 100 mg/kg was determined. The effective dose for the removal of own spermatogenic cells was revealed at a concentration of 80 mg/kg of live weight. With complete elimination of other types of spermatogenic cells, the number of Sertoli cells and spermatogonia in the testicle tubules decreased by 39 ± 2% and 98 ± 1%, respectively, compared with the control group. The efficiency of spermatogenesis recovery was assessed based on sperm analysis that was obtained from male recipients (n = 5 birds) 4 months after the introduction of donor cells using PCR. The presence of recombinant DNA (ZsGreen) in recipients’ sperm was shown. Thus, our results indicate the prospect of using spermatogonia as a genetic material for the production of transgenic poultry. Study was supported by the Russian Science Foundation (Project no.16-16-10059).
The use of testicular stem cells (spermatogonia) is of most interest for obtaining individuals with predetermined traits and genome genetic modification and for conservation of poultry gene pool. A significant population of mature donor germ cells (sperm) is formed upon successful spermatogonia cells transplantation into the testes of male recipients. Obtained sperm can be used to produce offspring with the desired traits. A key step in this technology is the removal of own spermatogenic cells (inhibition of spermatogenesis) in male recipients. The aim of research was to develop and optimize methodological approaches to inhibit the spermatogenesis in quail using busulfan. This drug was injected directly into the testes parenchyma of mature males by multiple injection at the concentration from 20 to 100 mg per 1kg of body weight (n = 25). Histological preparations of testes from the experimental quails were obtained to study composition of spermatogenic cells in the seminiferous tubules after busulfan administration. The male peers who were not injected with busulfan were used as a control. Experimental quails showed a decrease in the number of spermatogenic cells in the seminiferous tubules 32, 75, 111, 119 and 118 times compared with the control when using busulfan in concentrations 20, 40, 60, 80 and 100 mg/kg of weight, respectively (P < 0.001). The cells composition in the seminiferous tubules from experimental quails was represented mainly by Sertoli cells and spermatogonia. After busulfan introduction at the concentrations 20, 40, 60, 80 and 100 mg/kg, the percentage of spermatogonia was 55±5 %, 24±4 %, 6±2 %, 5±2 % and 4±1 %, respectively. The use of busulfan at the concentration of 80–100 mg/kg led to high mortality of quails. Thus, it was found that the optimal busulfan concentration for elimination of quail spermatogenic cells was 60 mg/kg. Supported by RFBR within Project №18-29-07079.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.