A highly effective laser thinning method is demonstrated to accurately control the thickness of MoTe2 layers. By utilizing the humidity present in the ambient atmosphere, multilayered MoTe2 films can be uniformly thinned all the way down to monolayer with layer‐by‐layer precision using an ultralow laser power density of 0.2 mW µm−2. Localized bandgap engineering is also performed in MoTe2, by creating regions with different bandgaps on the same film, enabling the formation of lateral homojunctions with sub‐200 nm spatial resolution. Field‐effect transistors fabricated from these thinned layers exhibit significantly improved electrical properties with an order of magnitude increase in on/off current ratios, along with enhancements in on‐current and field‐effect mobility values. Thinned devices also exhibit the fastest photoresponse (45 µs) for an MoTe2‐based visible photodetector reported to date, along with a high photoresponsivity. A highly sensitive monolayer MoTe2 photodetector is also reported. These results demonstrate the efficiency of the presented thinning approach in producing high‐quality MoTe2 films for electronic and optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.