The overarching goal of this paper is to shed light on the human influence on the changing patterns of heat waves in India using the Heat Wave Magnitude Index daily (HWMId). The HWMId obtained from the observational data sets shows a large increase in the heat waves during the past decades. Investigating the effects of natural (e.g., solar variations and volcanic forcings) and anthropogenic (e.g., greenhouse gas emissions, anthropogenic, land use, and land cover) forcings revealed that the anthropogenic factors have cause a two-fold increase in the occurrence probability of severe heat waves in central and mid-southern India during twentieth century. The spatial distribution of maximum HWMId values under natural and all forcings (including anthropogenic) indicates that in most places human activities have increases the frequency, duration and intensity of extreme heat waves. Under the Representative Concentration Pathway (RCP) 4.5, the risk of heat waves is projected to increase tenfold during the twenty-first century. More than ~ 70% of the land areas in India is projected to be influenced by heat waves with magnitudes greater than 9. Furthermore, we find a significant relationship between heat waves and deficits in precipitation. Results show that concurrent heat waves and droughts are projected to increase in most places in India during the twenty-first century.
<p>Water temperature is an important environmental variable that has impacts on the physical, chemical, and biological processes in streamflows. Extreme river water temperatures affect the spawning, development and survival of several fish species, and are considered as important indicators of the health of a river and essential variables in all habitat models. Unfortunately, river water temperature data is characterised by its limited availability: measurement sites are often scarce, and records are regularly very short when available. It is hence crucial to develop regional thermal data estimation models for ungauged and partially gauged locations. Very few studies in the literature focused on the estimation of extreme water temperatures at sites where thermal data are limited or inexistent. A Temperature-Duration-Curve (TDC) model is proposed in this work to provide real-time estimates of river water temperature at ungauged locations during extreme events. The TDCs are estimated at the ungauged locations using a Generalised Additive Model and are then used to provide continuous estimates of river water temperature at these sites based on a spatial interpolation model. The model is developed based on a data base of 126 river thermal stations from Canada. The performance of the method is compared to a simpler approach and results indicate that the developed TDC model is robust and useful in practice.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.