Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.%) and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM) applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.
This paper shows that the well-know chalcogenide Ge 2 Sb 2 Te 5 (GST) in its amorphous state may be advantageously used as solid electrolyte material to fabricate Conductive-Bridge Random Access Memory (CBRAM) devices. GST layer was sputtered on preliminary inkjet-printed silver lines acting as active electrode on either silicon or plastic substrates. Whatever the substrate, the resistance switching is unambiguously attested at a nanoscale by means of conductive-atomic force microscopy (C-AFM) using a Pt-Ir coated tip on the GST surface acting as a passive electrode. The resistance change is correlated to the appearance or disappearance of concomitant hillocks and current spots at the surface of the GST layer. This feature is attributed to the formation/dissolution of a silver-rich protrusion beneath the AFM tip during set/reset operation. Beside, this paper constitutes a step toward the elaboration of crossbar memory arrays on flexible substrates since CBRAM operations were demonstrated on W/GST/Ag crossbar memory cells obtained from an heterogeneous fabrication process combining physical deposition and inkjet-printing.
The crystallization of stoichiometric GaSb thin films was studied by combined in situ synchrotron techniques and static laser testing. It is demonstrated that upon crystallization, GaSb thin films exhibit an unusual behaviour with increasing thickness and concomitant decreasing mass density while its electrical resistance drops as commonly observed in phase change materials. Furthermore, beyond GaSb amorphous-to-crystalline phase transition, an elemental segregation and a separate crystallization of a pure Sb phase is evidenced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.