Real time reverse transcriptase (RRT)-polymerase chain reaction (PCR) for the detection of Eurasian H5 avian influenza virus (AIV) isolates was adapted from an existing protocol, optimized, and validated using a number of genetically diverse H5 isolates (n = 51). These included 34 "Asian lineage" H5N1 highly pathogenic avian influenza (HPAI) viruses (2004-2006), plus 12 other H5 isolates from poultry outbreaks and wild birds in the Eastern Hemisphere (1996-2005). All 51 were positive by H5 Eurasian RRT-PCR. Specificity was assessed by testing representative isolates from all other AL virus subtypes (n = 52), non-AI avian pathogens (n = 8), plus a negative population of clinical specimens derived from AI-uninfected wild birds and poultry (n = 604); all were negative by H5 Eurasian RRT-PCR. RNA was directly extracted from suspect HPAI H5N1 clinical specimens (Africa, Asia, and Europe; 2005-2006; n = 58) from dead poultry and wild birds, and 55 recorded as positive by H5 Eurasian RRT-PCR: Fifty-one of these 55 were in agreement with positive AIV isolation in embryonated chickens' eggs. H5 Eurasian RRT-PCR was invaluable in H5 outbreak diagnosis and management by virtue of its rapidity and high degree of sensitivity and specificity. This method provides a platform for automation that can be applied for large-scale intensive investigations, including surveillance.
Background Avian influenza (AI) caused by H7 AI viruses (AIVs) of both low pathogenicity (LP) and high pathogenicity (HP) are notifiable poultry diseases. Objectives Design and validate two RealTime reverse transcriptase polymerase chain reactions (RRT PCRs) for Eurasian H7 AIV detection and pathotyping. Methods The H7 RRT PCRs amplified within the (i) HA2 and (ii) cleavage site CS regions of the haemagglutinin gene. Both were validated against 65 H7 AIVs, 57 non‐H7 AIVs and 259 poultry swabs in comparison to M gene (AI generic) RRT PCR and virus isolation (VI). An additional 38 swabs and 20 tissue specimens extended validation against M gene RRT PCR. Results Both H7 RRT PCRs amplified all 61 Eurasian lineage H7 AIVs and none of 57 non‐H7 AIVs. A total of 297 poultry swabs were used to determine diagnostic sensitivity and specificity relative to M gene RRT PCR, sensitivity was 95·4% and 64·6% for the HA2 and CS RRT PCRs respectively, and specificity 97·9% and 99·6% respectively. The H7 HA2 RRT PCR was more sensitive than VI. This was emphasized by analysis of 37 swabs from turkeys infected experimentally with HPAI H7N1 virus sampled at 24 hours post‐inoculation and LPAI H7N1 chicken infections sampled at 40–64 hours. Although less sensitive, usefulness of the H7 CS RRT PCR was confirmed by the correct molecular pathotyping for all 61 Eurasian lineage H7 AIVs tested. Conclusions The high sensitivity of H7 HA2 RRT PCR confirms its suitability for use in poultry surveillance and disease diagnosis. H7 CS RRT PCR provides an opportunity for rapid pathotyping of H7 AIVs.
Diagnosis and management of avian influenza outbreaks now include the use of validated real-time reverse transcription PCR (RRT-PCR) methods in many countries, including all member states of the European Union. Two outbreaks in poultry of notifiable avian influenza (H5 and H7 subtypes) that occurred in Great Britain during 2007 will serve as examples in which RRT-PCR demonstrated its value in 1) rapid diagnosis and confirmation of disease by sensitive and specific laboratory testing of samples derived from the index cases and 2) high-volume, rapid testing of surveillance samples. The two poultry outbreaks followed the incursion of a H7N2 low-pathogenicity notifiable avian influenza (LPNAI) virus (May-June 2007) and a Eurasian lineage H5N1 highly pathogenic notifiable avian influenza (HPNAI) virus (November 2007). Coupled with the use of high-throughput, robotic RNA extraction methods, a total of approximately 9300 and 20,300 field samples were tested by appropriate, validated RRT-PCR assays during the 4- and 5-wk duration of the H7N2 LPNAI and H5N1 HPNAI outbreaks, respectively. Fundamental features of the validated RRT-PCR assays used included their high degree of sensitivity, specificity, and rapidity, attributes that were invaluable in providing timely and accurate information for notifiable AI outbreak management.
Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n0282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated ''wet'' M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and ''wet'' M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.