We isolated from beef liver a putative insulin mediator termed INS-2, 1. Its structure was determined to be a novel inositol glycan pseudo-disaccharide Mn(2+) chelate containing D-chiro-inositol 2a (as pinitol) and galactosamine. Purification methods were scaled up from those previously reported to isolate an inositol glycan with similar composition from rat liver.(1) Structure of the beef liver glycan was determined by degradative chemistry and 2D NMR spectroscopy and confirmed by chemical synthesis. Its structure is 4-O-(2-amino-2-deoxy-beta-D-galactopyranosyl)-3-O-methyl-D-chiro-inositol 1 (INS-2, Figure 1). Its role as an insulin mimetic was demonstrated by its action in vivo to decrease elevated blood glucose injected to low-dose streptozotocin diabetic rats in a stereospecific and dose-dependent manner. The pseudo-disaccharide also stimulated [(14)C]glucose incorporation into [(14)C]glycogen in a dose-dependent manner in H4IIE hepatoma cells in the presence of insulin, thus enhancing insulin action. Only when chelated to Mn(2+) did it activate pyruvate dehydrogenase phosphatase in vitro in a dose-dependent manner. To our knowledge, this is the first example of a beta-1,4-linked inositol glycan consisting of D-chiro-inositol and galactosamine isolated from animal tissues with insulin mimetic actions.
4) Dr. F. E. Boettner (Polysciences, Inc.) has recently informed us that he has developed an improved method to separate taxol and cephalomannine.(5) Kingston, D.
The standard of care to treat hypothyroidism is daily administration of levo-thyroxine (LT4). This is based on the understanding that deiodinases can restore production of T3 and compensate for the small amounts of T3 that are normally produced by the thyroid gland. However, pre-clinical and clinical evidence indicating that deiodinases fall short of restoring T3 production is accumulating, opening the possibility that liothyronine (LT3) might have a role in the treatment of some hypothyroid patients. LT3 tablets taken orally result in a substantial peak of circulating T3 that is dissipated during the next several hours, which is markedly distinct from the relative stability of T3 levels in normal individuals. Thus, the effort to developing new delivery strategies for LT3, including slow release tablets, liquid formulations, use of T3-related/hybrid molecules such as T3 sulfate, poly-zinc-T3 and glucagon-T3, nanoparticles containing T3, subcutaneous implant of T3-containing matrices, and stem cells for de novo development of the thyroid gland. This article reviews these strategies, their applicability in animal models and translatability to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.