OBJECTIVE The efficacy and safety of continuous glucose monitoring (CGM) in adjusting inpatient insulin therapy have not been evaluated. RESEARCH DESIGN AND METHODS This randomized trial included 185 general medicine and surgery patients with type 1 and type 2 diabetes treated with a basal-bolus insulin regimen. All subjects underwent point-of-care (POC) capillary glucose testing before meals and bedtime. Patients in the standard of care (POC group) wore a blinded Dexcom G6 CGM with insulin dose adjusted based on POC results, while in the CGM group, insulin adjustment was based on daily CGM profile. Primary end points were differences in time in range (TIR; 70–180 mg/dL) and hypoglycemia (<70 mg/dL and <54 mg/dL). RESULTS There were no significant differences in TIR (54.51 ± 27.72 vs. 48.64 ± 24.25%; P = 0.14), mean daily glucose (183.2 ± 40 vs. 186.8 ± 39 mg/dL; P = 0.36), or percent of patients with CGM values <70 mg/dL (36 vs. 39%; P = 0.68) or <54 mg/dL (14 vs. 24%; P = 0.12) between the CGM-guided and POC groups. Among patients with one or more hypoglycemic events, compared with POC, the CGM group experienced a significant reduction in hypoglycemia reoccurrence (1.80 ± 1.54 vs. 2.94 ± 2.76 events/patient; P = 0.03), lower percentage of time below range <70 mg/dL (1.89 ± 3.27% vs. 5.47 ± 8.49%; P = 0.02), and lower incidence rate ratio <70 mg/dL (0.53 [95% CI 0.31–0.92]) and <54 mg/dL (0.37 [95% CI 0.17–0.83]). CONCLUSIONS The inpatient use of real-time Dexcom G6 CGM is safe and effective in guiding insulin therapy, resulting in a similar improvement in glycemic control and a significant reduction of recurrent hypoglycemic events compared with POC-guided insulin adjustment.
Background:The basis for the treatment of hypothyroidism with levothyroxine (LT4) is that humans activate T4 to triiodothyronine (T3). Thus, while normalizing serum thyrotropin (TSH), LT4 doses should also restore the body's reservoir of T3. However, there is evidence that T3 is not fully restored in LT4-treated patients. Summary: For patients who remain symptomatic on LT4 therapy, clinical guidelines recommend, on a trial basis, therapy with LT4+LT3. Reducing the LT4 dose by 25 mcg/day and adding 2.5-7.5 mcg liothyronine (LT3) once or twice a day is an appropriate starting point. Transient episodes of hypertriiodothyroninemia with these doses of LT4 and LT3 are unlikely to go above the reference range and have not been associated with adverse drug reactions. Trials following almost a 1000 patients for almost 1 year indicate that similar to LT4, therapy with LT4+LT3 can restore euthyroidism while maintaining a normal serum TSH. An observational study of 400 patients with a mean follow-up of *9 years did not indicate increased mortality or morbidity risk due to cardiovascular disease, atrial fibrillation, or fractures after adjusting for age when compared with patients taking only LT4. Desiccated thyroid extract (DTE) is a form of combination therapy in which the LT4/LT3 ratio is *4:1; the mean daily dose of DTE needed to normalize serum TSH contains *11 mcg T3, but some patients may require higher doses. The DTE remains outside formal FDA oversight, and consistency of T4 and T3 contents is monitored by the manufacturers only. Conclusions: Newly diagnosed hypothyroid patients should be treated with LT4. A trial of combination therapy with LT4+LT3 can be considered for those patients who have unambiguously not benefited from LT4.
The standard of care to treat hypothyroidism is daily administration of levo-thyroxine (LT4). This is based on the understanding that deiodinases can restore production of T3 and compensate for the small amounts of T3 that are normally produced by the thyroid gland. However, pre-clinical and clinical evidence indicating that deiodinases fall short of restoring T3 production is accumulating, opening the possibility that liothyronine (LT3) might have a role in the treatment of some hypothyroid patients. LT3 tablets taken orally result in a substantial peak of circulating T3 that is dissipated during the next several hours, which is markedly distinct from the relative stability of T3 levels in normal individuals. Thus, the effort to developing new delivery strategies for LT3, including slow release tablets, liquid formulations, use of T3-related/hybrid molecules such as T3 sulfate, poly-zinc-T3 and glucagon-T3, nanoparticles containing T3, subcutaneous implant of T3-containing matrices, and stem cells for de novo development of the thyroid gland. This article reviews these strategies, their applicability in animal models and translatability to humans.
This pilot 3-month clinical trial investigated the feasibility, effectiveness, and acceptability of using the Track Health function of the Veterans Health Administration's personal health record for eliciting a more positive physical activity and dietary intake lifestyle in a sample of 38 overweight and obese Veterans with prediabetes. Comparisons between baseline and 3 months post-intervention indicated significant improvements in weight, physical activity, abdominal circumference, and blood pressure. Use of a personal health record that users can identify with and find usable and useful coupled with instruction targeting critical functionalities could potentially promote healthy behavioral lifestyle changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.