We present the photometric calibration of the Swift Ultraviolet/Optical Telescope (UVOT) which includes: optimum photometric and background apertures, effective area curves, colour transformations, conversion factors for count rates to flux and the photometric zero-points (which are accurate to better than 4 per cent) for each of the seven UVOT broad-band filters. The calibration was performed with observations of standard stars and standard star fields that represent a wide range of spectral star types. The calibration results include the position-dependent uniformity, and instrument response over the 1600-8000 Å operational range. Because the UVOT is a photon-counting instrument, we also discuss the effect of coincidence loss on the calibration results. We provide practical guidelines for using the calibration in UVOT data analysis. The results presented here supersede previous calibration results.
Gamma Ray Bursts (GRBs) are bright, brief flashes of high energy photons that have fascinated scientists for 30 years. They come in two classes 1 : long (>2 s), softspectrum bursts and short, hard events. The major progress to date on understanding GRBs has been for long bursts which are typically at high redshift (z ~ 1) and are in sub-luminous star-forming host galaxies. They are likely produced in core-collapse explosions of massive stars 2 . Until the present observation, no short GRB had been accurately (<10") and rapidly (minutes) located. Here we report the detection of X-ray afterglow from and the localization
The Ultraviolet/Optical Telescope (UVOT) is one of three instruments onboard the Swift observatory. The photometric calibration has been published, and this paper follows up with details on other aspects of the calibration including a measurement of the point spread function with an assessment of the orbital variation and the effect on photometry. A correction for large-scale variations in sensitivity over the field of view is described, as well as a model of the coincidence loss which is used to assess the coincidence correction in extended regions. We have provided a correction for the detector distortion and measured the resulting internal astrometric accuracy of the UVOT, also giving the absolute accuracy with respect to the International Celestial Reference System. We have compiled statistics on the background count rates, and discuss the sources of the background, including instrumental scattered light. In each case, we describe any impact on UVOT measurements, whether any correction is applied in the standard pipeline data processing or whether further steps are recommended.
Very early observations with the Swift satellite of γ-ray burst (GRB) afterglows reveal that the optical component is not detected in a large number of -2cases. This is in contrast to the bright optical flashes previously discovered in some GRBs (e.g. GRB 990123 and GRB 021211). Comparisons of the X-ray afterglow flux to the optical afterglow flux and prompt γ-ray fluence is used to quantify the seemingly deficient optical, and in some cases X-ray, light at these early epochs. This comparison reveals that some of these bursts appear to have higher than normal γ-ray efficiencies. We discuss possible mechanisms and their feasibility for explaining the apparent lack of early optical emission. The mechanisms considered include: foreground extinction, circumburst absorption, Ly-α blanketing and absorption due to high redshift, low density environments, rapid temporal decay, and intrinsic weakness of the reverse shock. Of these, foreground extinction, circumburst absorption, and high redshift provide the best explanations for most of the non-detections in our sample. There is tentative evidence of suppression of the strong reverse shock emission. This could be because of a Poynting-flux-dominated flow or a pure non-relativistic hydrodynamical reverse shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.