The objective of this study is to develop an ensemble classifier with Merit Merge feature selection that will enhance efficiency of classification in a multivariate multiclass medical data for effective disease diagnostics. The large volumes of features extracted from brain Magnetic Resonance Images and neuropsychological tests for diagnosis lead to more complexity in classification procedures. A higher level of objectivity than what readers have is needed to produce reliable dementia diagnostic techniques. Ensemble approach which is trained with features selected from multiple biomarkers facilitated accurate classification when compared with conventional classification techniques. Ensemble approach for feature selection is experimented with classifiers like Naïve Bayes, Random forest, Support Vector Machine, and C4.5. Feature search is done with Particle Swarm Optimisation to retrieve the subset of features for further selection with the ensemble classifier. Features selected by the proposed C4.5 ensemble classifier with Particle Swarm Optimisation search, coupled with Merit Merge technique (CPEMM), outperformed bagging feature selection of SVM, NB, and Random forest classifiers. The proposed CPEMM feature selection found the best subset of features that efficiently discriminated normal individuals and patients affected with Mild Cognitive Impairment and Alzheimer's Dementia with 98.7% accuracy.
Abstract-This paper presents a comparison of different data imputation approaches used in filling missing data and proposes a combined approach to estimate accurately missing attribute values in a patient database. The present study suggests a more robust technique that is likely to supply a value closer to the one that is missing for effective classification and diagnosis. Initially data is clustered and z-score method is used to select possible values of an instance with missing attribute values. Then multiple imputation method using LSSVM (Least Squares Support Vector Machine) is applied to select the most appropriate values for the missing attributes. Five imputed datasets have been used to demonstrate the performance of the proposed method. Experimental results show that our method outperforms conventional methods of multiple imputation and mean substitution. Moreover, the proposed method CZLSSVM (Clustered Z-score Least Square Support Vector Machine) has been evaluated in two classification problems for incomplete data. The efficacy of the imputation methods have been evaluated using LSSVM classifier. Experimental results indicate that accuracy of the classification is increases with CZLSSVM in the case of missing attribute value estimation. It is found that CZLSSVM outperforms other data imputation approaches like decision tree, rough sets and artificial neural networks, K-NN (KNearest Neighbour) and SVM. Further it is observed that CZLSSVM yields 95 per cent accuracy and prediction capability than other methods included and tested in the study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.