Postprandial changes in osmolality, mineral, and volatile fatty acid concentrations in rumen fluid were examined in three cattle fed six widely differing diets. Mineral concentrations varied with diet and postprandial time. However, net changes in postprandial mineral concentrations did not contribute significantly to changes in osmotic pressure. There was an effect of diet and time after feeding on concentrations of volatile fatty acids. Postprandial changes in osmotic pressure were primarily due to changes in concentrations of volatile fatty acids. Magnesium oxide and sodium bicarbonate were fed to sheep to increase the osmotic pressure in rumen fluid. The salt supplement decreased acetate, propionate, heat, and methane production. However, rumen water flux was unaffected by the salt supplementation. Diets which produce hypertonic rumen fluid due to high mineral and/or concentrations of volatile fatty acids may reduce fermentation in rumen.
The family approach for related compounds can be used to evaluate hazard and estimate reference concentrations/doses using internal dose metrics for a group (family) of metabolically related compounds. This approach is based upon a simple four-step framework for organizing and evaluating toxicity data: 1) exposure, 2) tissue dosimetry, 3) mode of action, and 4) response. Expansion of the traditional exposure-response analysis has been increasingly incorporated into regulatory guidance for chemical risk assessment. The family approach represents an advancement in the planning and use of toxicity testing that is intended to facilitate the maximal use of toxicity data. The result is a methodology that makes toxicity testing and the development of acceptable exposure limits as efficient and effective as possible. An example is provided using butyl acetate and its metabolites (butanol, butyraldehyde, and butyrate), widely used chemicals produced synthetically by the industrial oxo process. A template pharmacokinetic model has been developed that comprises submodels for each compound linked in series. This preliminary model is being used to coordinately plan toxicity studies, pharmacokinetic studies, and analyses to obtain reference concentrations/doses. Implementation of the family approach using pharmacokinetic modeling to obtain tissue dose metrics is described and its applications are evaluated.
Methoxyethanol (ethylene glycol monomethyl ether, EGME), ethoxyethanol (ethylene glycol monoethyl ether, EGEE), and ethoxyethyl acetate (ethylene glycol monoethyl ether acetate, EGEEA) are all developmental toxicants in laboratory animals. Due to the imprecise nature of the exposure data in epidemiology studies of these chemicals, we relied on human and animal pharmacokinetic data, as well as animal toxicity data, to derive 3 occupational exposure limits (OELs). Physiologically based pharmacokinetic (PBPK) models for EGME, EGEE, and EGEEA in pregnant rats and humans have been developed (M. L. Gargas et al., 2000, Toxicol. Appl. Pharmacol. 165, 53-62; M. L. Gargas et al., 2000, Toxicol. Appl. Pharmacol. 165, 63-73). These models were used to calculate estimated human-equivalent no adverse effect levels (NAELs), based upon internal concentrations in rats exposed to no observed effect levels (NOELs) for developmental toxicity. Estimated NAEL values of 25 ppm for EGEEA and EGEE and 12 ppm for EGME were derived using average values for physiological, thermodynamic, and metabolic parameters in the PBPK model. The uncertainties in the point estimates for the NOELs and NAELs were estimated from the distribution of internal dose estimates obtained by varying key parameter values over expected ranges and probability distributions. Key parameters were identified through sensitivity analysis. Distributions of the values of these parameters were sampled using Monte Carlo techniques and appropriate dose metrics calculated for 1600 parameter sets. The 95th percentile values were used to calculate interindividual pharmacokinetic uncertainty factors (UFs) to account for variability among humans (UF(h,pk)). These values of 1.8 for EGEEA/EGEE and 1.7 for EGME are less than the default value of 3 for this area of uncertainty. The estimated human equivalent NAELs were divided by UF(h,pk) and the default UFs for pharmacodynamic variability among animals and among humans to calculate the proposed OELs. This methodology indicates that OELs (8-h time-weighted average) that should protect workers from the most sensitive adverse effects of these chemicals are 2 ppm EGEEA and EGEE (11 mg/m(3) EGEEA, 7 mg/m(3) EGEE) and 0.9 ppm (3 mg/m(3)) EGME. These recommendations assume that dermal exposure will be minimal or nonexistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.